[1] 黄诘,张友安,刘永新.一种有撞击角和视场角约束的运动目标的偏置比例导引算法[J].宇航学报,2016,37(2):195-202.HUANG J,ZHANG Y A,LIU Y X.A biased proportional guidance algorithm for moving target with impact angle and field-of-view constraints[J].Journal of Astronautics,2016,37(2):195-202(in Chinese).
[2] ERER K S,TEKIN R.Impact time and angle control based on constrained optimal solutions[J].Journal of Guidance,Control,and Dynamics,2016,39(10):1-7.
[3] TAUB I,SHIMA T.Intercept angle missile guidance under time varying acceleration bounds[J].Journal of Guidance,Control,and Dynamics,2013,36(3):686-699.
[4] LEE C H,KIM T H,TAHK M J.Interception angle control guidance using proportional navigation with error feedback[J].Journal of Guidance,Control,and Dynamics,2013,36(5):1556-1561.
[5] WANG H,LIN D,CHENG Z,et al.Optimal guidance of extended trajectory shaping[J].Chinese Journal of Aeronautics,2014,27(5):1259-1272.
[6] 王晓芳,王紫扬,林海.一种同时具有攻击时间和攻击角度约束的协同制导律[J].弹道学报,2017,29(4):1-8.WANG X F,WANG Z Y,LIN H.A cooperative guidance law with constraints of impact time and impact angle[J].Journal of Ballistics,2017,29(4):1-8(in Chinese).
[7] 张小件,刘明雍,李洋.基于反演滑模和扩张观测器的带角度约束制导律设计[J].系统工程与电子技术,2017,39(6):1311-1316.ZHANG X J,LIU M Y,LI Y.Backstepping sliding mode control and extended state observer based guidance law design with angles[J].Systems Engineering and Electronics,2017,39(6):1311-1316(in Chinese).
[8] WANG X,HONG Y.Finite-time consensus for multi-agent networks with second-order agent dynamics[C]//Proceedings of the IFAC World Congress.Laxenburg:IFCA,2018:15185-15190.
[9] 熊少锋,王卫红,王森.带攻击角度约束的非奇异快速终端滑模制导律[J].控制理论与应用,2014,31(3):269-278.XIONG S F,WANG W H,WANG S.Nonsingular fast terminal sliding-mode guidance with intercept angle constraint[J].Control Theory & Applications,2014,31(3):269-278(in Chinese).
[10] 赵斌,周军,卢晓东,等.考虑终端角度约束的自适应积分滑模制导律[J].控制与决策,2017,32(11):1966-1972.ZHAO B,ZHOU J,LU X D,et al.Adaptive integral sliding mode guidance law considering impact angel constraint[J].Control and Decision,2017,32(11):1966-1972(in Chinese).
[11] 赵曜,李璞,刘娟,等.带碰撞角约束的三维有限时间滑模制导律[J].北京航空航天大学学报,2018,44(2):273-279.ZHAO Y,LI P,LIU J,et al.Finite-time sliding mode control based 3D guidance law with impact angle constraints[J].Journal of Beijing University of Aeronautics and Astronautics,2018,44(2):273-279(in Chinese).
[12] 司玉洁,宋申民.拦截高超声速飞行器的三维有限时间制导律设计[J].中国惯性技术学报,2017,25(3):405-414.SI Y J,SONG S M.Design of three-dimensional finite-time guidance law for intercepting hypersonic vehicle[J].Journal of Chinese Inertial Technology,2017,25(3):405-414(in Chinese).
[13] ARIE L.Principles of 2-sliding mode design[J].Automatica,2007,43(4):576-586.
[14] SUN L H,WANG W H,YI R,et al.A noval guidance law using fast terminal sliding mode control with impact angle constraints[J].ISA Transactions,2016,64:12-23.
[15] LI P,PENG X F,MA J J,et al.Non-homogeneous disturbance observer-based second order sliding mode control for a tailless aircraft[C]//Proceedings of Chinese Automation Congress.Piscataway,NJ:IEEE Press,2013:120-125.
[16] BHAT S P,BERNSTEIN D S.Finite-time stability of continuous autonomous systems[J].SIAM Journal on Control and Optimization,2000,38(3):751-766.
[17] 周慧波.基于有限时间和滑模理论的导引律及多导弹协同制导研究[D].哈尔滨:哈尔滨工业大学,2015:41-44.ZHOU H B.Study on guidance law and cooperative guidance for multi-missiles based on finite-time and sliding mode theory[D].Harbin:Harbin Institute of Technology,2015:41-44(in Chinese). |