留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阻拦着舰过程中飞行员颈部的损伤分析与预测

包佳仪 王兴伟 周前祥 谌玉红 李晨明 刘华蔚

包佳仪, 王兴伟, 周前祥, 等 . 阻拦着舰过程中飞行员颈部的损伤分析与预测[J]. 北京航空航天大学学报, 2019, 45(3): 499-507. doi: 10.13700/j.bh.1001-5965.2018.0404
引用本文: 包佳仪, 王兴伟, 周前祥, 等 . 阻拦着舰过程中飞行员颈部的损伤分析与预测[J]. 北京航空航天大学学报, 2019, 45(3): 499-507. doi: 10.13700/j.bh.1001-5965.2018.0404
BAO Jiayi, WANG Xingwei, ZHOU Qianxiang, et al. Analysis and prediction of neck injury of pilots during carrier aircraft arrest deck-landing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3): 499-507. doi: 10.13700/j.bh.1001-5965.2018.0404(in Chinese)
Citation: BAO Jiayi, WANG Xingwei, ZHOU Qianxiang, et al. Analysis and prediction of neck injury of pilots during carrier aircraft arrest deck-landing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3): 499-507. doi: 10.13700/j.bh.1001-5965.2018.0404(in Chinese)

阻拦着舰过程中飞行员颈部的损伤分析与预测

doi: 10.13700/j.bh.1001-5965.2018.0404
基金项目: 

国家重点研发计划 2016YFC0802807

详细信息
    作者简介:

    包佳仪  女, 博士研究生。主要研究方向:航空航天人因工程

    王兴伟  男, 博士, 教授, 硕士生导师。主要研究方向:航空工效学

    周前祥  男, 博士, 教授, 博士生导师。主要研究方向:航空航天人因工程

    通讯作者:

    王兴伟, E-mail:xingweiwang2013@sina.cn

  • 中图分类号: TP391.9

Analysis and prediction of neck injury of pilots during carrier aircraft arrest deck-landing

Funds: 

National Key R & D Program of China 2016YFC0802807

More Information
  • 摘要:

    针对舰载机飞行员在阻拦着舰过程中因受到较大的阻拦载荷而导致颈部疼痛发病率较高问题,采用有限元方法开展了持续过载条件下飞行员颈部的生物力学响应研究。基于CT扫描图像,运用Mimics对头部及C1-T1椎体进行三维重建,利用Geomagic Studio进行曲面构型,运用Hypermesh和ABAQUS建立有限元模型,并在ABAQUS中计算各椎体及软组织的应力应变情况,结合损伤评价判定准则——NIC和Nij对飞行员颈部损伤情况进行分析和预测。结果表明:有限元模型动力学响应与静态和动态实验结果基本吻合,验证了模型的准确性和建模方法的可行性;关节囊韧带拉伸较其他韧带更长,易造成拉伤或松弛,长期训练会造成韧带受损、椎间盘突出和颈椎失稳等疾病;C4-C5椎间盘的应力均值大于C5-C6椎间盘,因此,该部位更容易造成损伤,应强化保护;颈部危重及以上损伤的概率仅为6.07%,即造成椎骨和脊髓损伤的可能性很小。研究结果可为飞行员颈部保护装置、对抗措施和飞行训练方法的设计与改进提供理论支撑。

     

  • 图 1  椎间盘建立

    Figure 1.  Intervertebral disc building

    图 2  完整有限元模型

    Figure 2.  Complete finite element model

    图 3  坐标系示意图

    Figure 3.  Schematic diagram of coordinate system

    图 4  侧屈椎间活动度数据对比

    Figure 4.  Data comparison of lateral flexion intervertebral range of motion

    图 5  侧屈过程仿真结果

    Figure 5.  Simulation results of lateral flexion process

    图 6  T1加载的加速度-时间曲线

    Figure 6.  Acceleration-time curve of T1 loading

    图 7  T1加载的转动角度-时间曲线

    Figure 7.  Rotation angle-time curve of T1 loading

    图 8  Y方向上的加速度-时间对比

    Figure 8.  Acceleration-time comparison in Y direction

    图 9  舰载机阻拦着舰加速度-时间曲线

    Figure 9.  Acceleration-time curve during arrest deck-landing of carrier-based aircraft

    图 10  C7椎骨应力云图

    Figure 10.  Stress contour of C7 vertebrae

    图 11  Stress contour of C7 vertebrae

    Figure 11.  Intervertebral discs' stress-time curve

    图 12  1 300 ms时椎体反“S”型

    Figure 12.  Vertebral anti-S type at 1 300 ms

    图 13  主要韧带相对最大拉伸量

    Figure 13.  Maximum relative tensile strain of main ligaments

    图 14  头部质心与T1相对加速度和相对速度

    Figure 14.  Mass center of head and T1 relative acceleration and relative speed

    图 15  NIC-时间曲线

    Figure 15.  NIC-time curve

    图 16  第50百分位假人Nij标准化截距值

    Figure 16.  The 50th percent dummy Nij normalized intercept value

    图 17  Nij时间曲线

    Figure 17.  Nij time curve

    表  1  模型材料参数[7-9]

    Table  1.   Model material parameters[7-9]

    组织名称 弹性模量/MPa 泊松比 密度/(10-3kg·m-3) 单元类型
    皮质骨 10000 0.3 2.0 Shell
    松质骨 450 0.3 1.0 Solid
    椎骨终板 1000 0.4 1.83 Shell
    纤维环 3.4 0.4 1.2 Solid
    髓核 1.0 0.49 1.1 Solid
    前纵韧带 28.2 0.4 1.1 Truss
    后纵韧带 23 0.4 1.1 Truss
    黄韧带 3.5 0.4 1.1 Truss
    关节囊韧带 5 0.4 1.1 Truss
    棘上韧带 4.9 0.4 1.1 Truss
    翼状韧带 5 0.4 1.1 Truss
    寰椎横韧带 20 0.4 1.1 Truss
    齿突尖韧带 20 0.4 1.1 Truss
    寰枕前膜 20 0.4 1.1 Truss
    寰枕后膜 20 0.4 1.1 Truss
    下载: 导出CSV

    表  2  肌肉的参数设置[10]

    Table  2.   Muscle parameter setting[10]

    材料参数 数值
    密度ρ/(kg·m-3) 1.06
    泊松比ν 0.495
    弹性分量μi/MPa 0.011 48
    弹性分量αi 12.32
    黏性分量Gi 0.001, 0.575, 0.288, 0.137
    黏性分量βi/s-1 73.4, 50.3, 42.7, 0.255
    下载: 导出CSV

    表  3  AIS等级及损伤描述[22]

    Table  3.   AIS and injury description[22]

    AIS等级 损伤描述
    0 无损伤(no injury)
    1 轻微伤(minor)
    2 中度伤(moderate)
    3 较重伤(serious)
    4 严重伤(severe)
    5 危重伤(critical)
    6 最危重伤(maximum)
    9 未知等级(unknown)
    下载: 导出CSV

    表  4  预测各级损伤发生的概率

    Table  4.   Probability prediction of injury at all levels

    损伤等级 概率/%
    AIS≥2 27.37
    AIS≥3 18.99
    AIS≥4 16.59
    AIS≥5 6.07
    下载: 导出CSV
  • [1] 郑峰婴.舰载机着舰引导技术研究[D].南京: 南京航空航天大学, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10287-2007194405.htm

    ZHENG F Y.Research on carrier-based carrier navigation technology[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2007(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10287-2007194405.htm
    [2] 张选斌, 唐勇, 岳洪梅.±Gx加速度对航母舰载机飞行员的影响及防护对策[J].人民军医, 2013, 56(10):1124-1125. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rmjy201310003

    ZHANG X B, TANG Y, YUE H M.The influence of ±Gx acceleration on the pilots of aircraft carriers and countermeasures[J].People's Military Surgeon, 2013, 56(10):1124-1125(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rmjy201310003
    [3] 张建, 王庆敏, 李明皋, 等.外军航母舰载机飞行员职业特点分析[J].海军医学杂志, 2012, 33(2):144-145. doi: 10.3969/j.issn.1009-0754.2012.02.040

    ZHANG J, WANG Q M, LI M G, et al.Analysis of occupational characteristics of aircraft carrier pilots of foreign military carriers[J].Journal of Navy Medicine, 2012, 33(2):144-145(in Chinese). doi: 10.3969/j.issn.1009-0754.2012.02.040
    [4] 张建国, 周蕊, 薛强.基于挥鞭样损伤研究的颈部有限元模型的建立及验证[J].中国生物医学工程学报, 2008, 27(3):389-392. doi: 10.3969/j.issn.0258-8021.2008.03.013

    ZHANG J G, ZHOU R, XUE Q.Establishment and verification of cervical finite element model based on whiplash injury research[J].Chinese Journal of Biomedical Engineering, 2008, 27(3):389-392(in Chinese). doi: 10.3969/j.issn.0258-8021.2008.03.013
    [5] ZHANG Q H, TEO E C, TAN K W.Effect of muscles activation on head-neck complex under simulated ejection[J].Journal of Musculoskeletal Research, 2011, 40(Supl.2):155-165. doi: 10.1142/S0218957704001326?src=recsys
    [6] YOGANANDAN N, KUMARESAN S, PINTAR F A.Geometric and mechanical properties of human cervical spine ligaments[J].Journal of Biomechanical Engineering, 2000,122(6):623-629. doi: 10.1115/1.1322034
    [7] DUAN Y, WANG H H, JIN A M, et al.Finite element analysis of posterior cervical fixation[J].Orthopaedics & Traumatology:Surgery & Research, 2015,101(1):23-29. http://d.old.wanfangdata.com.cn/Periodical/zhcs201804005
    [8] CAI X, YU Y, LIU Z, et al.Three-dimensional finite element analysis of occipitocervical fixation using an anterior occiput-to-axis locking plate system:A pilot study[J].Spine Journal Official Journal of the North American Spine Society, 2014, 14(8):399-409. https://www.sciencedirect.com/science/article/pii/S1529943013014721#!
    [9] YANG K H, HU J, WHITE N A, et al.Development of numerical models for injury biomechanics research:A review of 50 years of publications in the stapp car crash conference[J].Stapp Car Crash Journal, 2006, 50:429-490.
    [10] LI F, LI H G, HU W, et al.Simulation of muscle activation with coupled nonlinear FE models[J].Journal of Mechanics in Medicine & Biology, 2016, 16(6):1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6f8d9de0be6cae13b5d3adf447649e04
    [11] RAJ P P.Intervertebral disc:Anatomy-physiology-pathophysiology-treatment[J].Pain Practice, 2008, 8(1):18-44. doi: 10.1111/ppr.2008.8.issue-1
    [12] MEYER F, BOURDET N, DECK C, et al.Human neck finite element model development and validation against original experimental data[J].Stapp Car Crash Journal, 2004, 48:177-206. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC0211750322/
    [13] PANJABI M M, JR BRAND R A, WHITE A A.Mechanical properties of the human thoracic spine as shown by three-dimensional load-displacement curves[J].Spine, 1976, 58(5):42-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=WK_LWW2017052520735224
    [14] EWING C L, THOMAS D J, LUSTICK L, et al.Dynamic response of human and primate head and neck to +Gy impact acceleration: DOT-HS-803-058[R].Washington, D.C.: TRID, 1978.
    [15] YOGANANDAN N, KUMARESAN S, PINTAR F A.Biomechanics of the cervical spine Part 2.Cervical spine soft tissue responses and biomechanical modeling[J].Clinical Biomechanics, 2001, 16(1):1-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=95e9a25fe424db1a5070430bcbc2ab99
    [16] LV K, ZHU Q, LI X.Modeling and simulation for arrested landing of carrier-based aircraft[C]//2011 IEEE International Conference on Mechatronics and Automation.Piscataway, NJ: IEEE Press, 2011: 1928-1933.
    [17] PARR M J C, MILLER M E, BRIDGES N R, et al.Evaluation of the Nij neck injury criteria with human response data for use in future research on helmet mounted display mass properties[J].Neuromodulation Technology at the Neural Interface, 2012, 56(1):2070-2074. doi: 10.1177/1071181312561439
    [18] 刘映璇.高速后碰撞时人体上颈椎的有限元分析[D].太原: 太原理工大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10112-1017832305.htm

    LIU Y X.Finite element analysis of the upper cervical vertebrae in high-speed post-collision[D].Taiyuan: Taiyuan University of Technology, 2017(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10112-1017832305.htm
    [19] BOSTRÖM O, SVENSSON M Y, ALDMAN B, et al.A new neck injury criterion candidate-based on injury findings in the cervical spinal ganglia after experimental neck extension trauma[C]//International IRCOBI Conference on the Biomechanics of Impact, 1996: 882-887.
    [20] PANJABI M M, ITO S, IVANCIC P C, et al.Evaluation of the intervertebral neck injury criterion using simulated rear impacts[J].Journal of Biomechanics, 2005, 38(8):1694. doi: 10.1016/j.jbiomech.2004.07.015
    [21] TANNOUS R, EPPINGER R, EMILY S, et al.Development of improved injury criteria for the assessment of advanced automotive restraint systems-Ⅱ[J].Dummies, 1998, 54(8):151-152.
    [22] SCHMITT K U, MUSER M H, WALZ F H, et al.Nkm-A proposal for a neck protection criterion for low-speed rear-end impacts[J].Traffic Injury Prevention, 2002, 3(2):117-126. doi: 10.1080/15389580212002
  • 加载中
图(17) / 表(4)
计量
  • 文章访问数:  695
  • HTML全文浏览量:  130
  • PDF下载量:  621
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-02
  • 录用日期:  2018-07-13
  • 网络出版日期:  2019-03-20

目录

    /

    返回文章
    返回
    常见问答