留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属材料微裂纹取向与超声波和频非线性效应

杨斌 史开元 袁廷璧 肖德铭 王侃 李振海

杨斌, 史开元, 袁廷璧, 等 . 金属材料微裂纹取向与超声波和频非线性效应[J]. 北京航空航天大学学报, 2019, 45(4): 695-704. doi: 10.13700/j.bh.1001-5965.2018.0518
引用本文: 杨斌, 史开元, 袁廷璧, 等 . 金属材料微裂纹取向与超声波和频非线性效应[J]. 北京航空航天大学学报, 2019, 45(4): 695-704. doi: 10.13700/j.bh.1001-5965.2018.0518
YANG Bin, SHI Kaiyuan, YUAN Tingbi, et al. Sum frequency nonlinear effects of micro-crack orientation and ultrasound in metallic materials[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(4): 695-704. doi: 10.13700/j.bh.1001-5965.2018.0518(in Chinese)
Citation: YANG Bin, SHI Kaiyuan, YUAN Tingbi, et al. Sum frequency nonlinear effects of micro-crack orientation and ultrasound in metallic materials[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(4): 695-704. doi: 10.13700/j.bh.1001-5965.2018.0518(in Chinese)

金属材料微裂纹取向与超声波和频非线性效应

doi: 10.13700/j.bh.1001-5965.2018.0518
基金项目: 

国家重点研发计划 2017YFA0403404

详细信息
    作者简介:

    杨斌  男, 博士, 副研究员。主要研究方向:结构材料失效监检测与分析

    通讯作者:

    杨斌, E-mail: binyang@ustb.edu.cn

  • 中图分类号: V221+.3;TB553

Sum frequency nonlinear effects of micro-crack orientation and ultrasound in metallic materials

Funds: 

National Key R & D Program of China 2017YFA0403404

More Information
  • 摘要:

    针对非线性超声无损检测金属材料微裂纹取向角度的问题,开展了微裂纹取向与超声波的和频非线性效应研究,建立了超声和频非线性特征系数与微裂纹取向角度的关系模型。理论和有限元仿真实验结果表明,随着微裂纹取向角度的逐渐增大,超声和频非线性特征系数与微裂纹取向角度之间呈现明显的正相关趋势,而且相比二次非线性特征系数,和频非线性特征系数对微裂纹取向检测更为敏感。同时,从超声波平均能流密度(即声强)的角度出发,计算可知和频分量声强会随着微裂纹取向角度的增大而增大,而二次谐波声强基本不会发生变化,同时和频分量声强占比相比于二次谐波声强占比也得到了明显提高。超声波声强计算结果与仿真计算结果趋势基本一致,证明了理论模型的正确性。通过实验验证了模型的有效性,为金属材料微裂纹取向的检测提供了一种有效的手段。

     

  • 图 1  混合频率信号示意图

    Figure 1.  Schematic of mixed frequency signal

    图 2  微裂纹取向示意图

    Figure 2.  Schematic of micro-crack orientation

    图 3  有限元模拟板示意图

    Figure 3.  Schematic of finite element simulation board

    图 4  激励及检测信号加载位置

    Figure 4.  Excitation and detection signal loading position

    图 5  不同微裂纹取向角度仿真模型图

    Figure 5.  Simulation model illustration for different micro-crack orientation angles

    图 6  激励信号的波形与频谱

    Figure 6.  Excitation signal waveform and spectrogram

    图 7  微裂纹取向角度为90°时输出信号的波形与频谱

    Figure 7.  Waveform and spectrogram of output signal when micro-crack orientation angle is 90°

    图 8  混频检测仿真结果

    Figure 8.  Mixed frequency detection simulation results

    图 9  不同取向角度微裂纹的和频非线性效应

    Figure 9.  Sum frequency nonlinear effect of microcracks at different orientation angles

    图 10  单频检测仿真结果

    Figure 10.  Single-frequency detection simulation results

    图 11  和频分量与二次谐波声强对比

    Figure 11.  Comparison of sound intensity of sum frequency component and second harmonic component

    图 12  实验流程示意图

    Figure 12.  Schematic of experiment process

    图 13  实验实物图

    Figure 13.  Experiment equipment

    图 14  试样制备图

    Figure 14.  Sample preparation

    图 15  不同微裂纹取向角度输出信号频域波形

    Figure 15.  Frequency domain waveform of different orientation angle micro-crack output signal

    图 16  超声和频非线性特征系数变化趋势

    Figure 16.  Tendency of ultrasound nonlinear characteristic coefficient of sum frequency

    表  1  各分量声强计算结果及占比

    Table  1.   Computation results and proportions of sound intensity of each component

    微裂纹取向角度/(°) I1/(1013W·m-2) I2/(1013W·m-2) η1/% η2/%
    0 1.247 1.797 0.289 0.681
    15 2.163 1.951 1.290 0.498
    30 1.608 3.541 1.455 0.958
    45 3.074 1.762 1.428 1.321
    60 3.262 0.3572 2.157 0.134
    75 4.264 1.166 4.518 0.273
    90 18.41 2.166 4.566 0.518
    下载: 导出CSV
  • [1] MEYENDORF N G, RÖSNER H, KRAMB V, et al.Thermo-acoustic fatigue characterization[J].Ultrasonics, 2002, 40(1-8):427-434. doi: 10.1016/S0041-624X(02)00155-5
    [2] 税国双, 汪越胜, 曲建民.材料力学性能退化的超声无损检测与评价[J].力学进展, 2005, 35(1):52-68. doi: 10.3321/j.issn:1000-0992.2005.01.006

    SHUI G S, WANG Y S, QU J M.Advances in nondestructive test and evaluation of material degradation using nonlinear ultrasound[J].Advances in Mechanics, 2005, 35(1):52-68(in Chinese). doi: 10.3321/j.issn:1000-0992.2005.01.006
    [3] 高桂丽, 李大勇, 董静薇, 等.铝合金薄板疲劳裂纹的非线性声学特性[J].机械工程学报, 2010, 46(18):71-76. http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201018013

    GAO G L, LI D Y, DONG J W, et al.Nonlinear acoustic characteristics of fatigue cracks in aluminum alloy sheet[J].Journal of Mechanical Engineering, 2010, 46(18):71-76(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201018013
    [4] JHANG K Y.Nonlinear ultrasonic techniques for non-destructive assessment of micro damage in material:A review[J].International Journal of Precision Engineering and Manufacturing, 2009, 10(1):123-135. doi: 10.1007/s12541-009-0019-y
    [5] 周正干, 刘斯明.非线性无损检测技术的研究、应用和发展[J].机械工程学报, 2011, 47(8):2-11. http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201108001

    ZHOU Z G, LIU S M.Nonlinear ultrasonic techniques used in nondestructive testing:A review[J].Journal of Mechanical Engineering, 2011, 47(8):2-11(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201108001
    [6] 焦敬品, 樊仲祥, 吴斌, 等.闭合裂纹非共线混频超声检测试验研究[J].声学学报, 2017, 42(2):205-213. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shengxxb201702009

    JIAO J P, FAN Z X, WU B, et al.Experiments of non-collinear mixed frequency ultrasonic for closed crack detection[J].Acta Acustica, 2017, 42(2):205-213(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shengxxb201702009
    [7] 焦敬品, 孙俊俊, 吴斌, 等.结构微裂纹混频非线性超声检测方法研究[J].声学学报, 2013, 38(6):648-656. http://d.old.wanfangdata.com.cn/Conference/7909354

    JIAO J P, SUN J J, WU B, et al.A frequency-mixing nonlinear ultrasonic technique for micro-crack detection[J].Acta Acustica, 2013, 38(6):648-656(in Chinese). http://d.old.wanfangdata.com.cn/Conference/7909354
    [8] JIAO J, MENG X, HE C, et al.Nonlinear Lamb wave-mixing technique for micro-crack detection in plates[J].NDT & E International, 2016, 85:63-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1ebdec88aee69e05be7ab1d6b94eaedf
    [9] CROXFORD A J, WILCOX P D, DRINKWATER B W, et al.The use of non-collinear mixing for nonlinear ultrasonic detection of plasticity and fatigue[J].Journal of the Acoustical Society of America, 2009, 126(5):117-122. doi: 10.1121/1.3231451
    [10] SUN M, XIANG Y, DENG M, et al.Scanning non-collinear wave mixing for nonlinear ultrasonic detection and localization of plasticity[J].NDT & E International, 2018, 93:1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7efb0f64b1d168936557af2df1b390c6
    [11] MCGOGERN M, REIS H.Damage characterization in dimension limestone cladding using noncollinear ultrasonic wave mixing[J].Optical Engineering, 2015, 55(1):011012. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9092c10d6f45115208c0052b1590778f
    [12] 冯侠, 邢修三.微裂纹取向对金属断裂过程的影响[J].北京理工大学学报, 1994, 14(3):234-239. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400158147

    FENG X, XING X S.On the effects of random orientation of microcracks upon the fracture process of metals[J].Journal of Beijing Institute of Technology, 1994, 14(3):234-239(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400158147
    [13] COURTNEY C R P, NEILD S A, WILCOX P D, et al.Application of the bispectrum for detection of small nonlinearities excited sinusoidally[J].Journal of Sound & Vibration, 2010, 329(20):4279-4293. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f63f8b2c6329c220ed4e43d1b1439309
    [14] DONSKOY D, SUTIN A, EKIMOV A.Nonlinear acoustic interaction on contact interfaces and its use for nondestructive testing[J].NDT & E International, 2001, 34(4):231-238. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=31ab0e6f82a7aff2b2979f3375665286
    [15] SOLODOV I Y, KROHN N, BUSSE G.An example of nonclassical acoustic nonlinearity in solids[J].Ultrasonics, 2002, 40(1-8):621-625. doi: 10.1016/S0041-624X(02)00186-5
    [16] BREAZEALE M A, PHILIP J.Determination of third-order elastic constants from ultrasonic harmonic generation measurements[M].Pittsburg:Academic Press, 1987.
    [17] CROXFORD A J, DRINKWATER B W, WILCOX P D.Nonlinear ultrasonic characterization using the noncollinear method[C]//37th Annual Review of Progress in Quantitative Nondestructive Evaluation.New York: AIP, 2011: 330-337. doi: 10.1063/1.3591872
    [18] 李海洋, 安志武, 廉国选, 等.粗糙接触界面超声非线性效应的概率模型[J].声学学报, 2015, 40(2):247-253. http://d.old.wanfangdata.com.cn/Conference/8358839

    LI H Y, AN Z W, LIAN G X, et al.A probability model for ultrasonic nonlinear effects of rough contact interface[J].Acta Acustica, 2015, 40(2):247-253(in Chinese). http://d.old.wanfangdata.com.cn/Conference/8358839
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  629
  • HTML全文浏览量:  133
  • PDF下载量:  748
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-04
  • 录用日期:  2018-11-16
  • 网络出版日期:  2019-04-20

目录

    /

    返回文章
    返回
    常见问答