[1] 王彦广,李健全,李勇,等. 近空间飞行器的特点及其应用前景[J].航天器工程,2007,16(1):50-57.WANG Y G,LI J Q,LI Y,et al.Characters and application prospects of near space flying vehicles[J].Spacecraft Engineering,2007,16(1):50-57(in Chinese).
[2] 陶梦初,何金海,刘毅.平流层准零风层统计特征及准两年周期振荡对其影响分析[J].气候与环境研究,2012,17(1):92-102.TAO M C,HE J H,LIU Y.Analysis of the characteristics of the stratospheric quasi-zero wind layer and the effects of the quasi-biennial oscillation on it[J].Climatic and Environmental Research,2012,17(1):92-102(in Chinese).
[3] 李春霖,罗蓉媛,陈彤曦.平流层通信新思路-谷歌气球计划[J].通信技术,2015,48(2):125-129.LI C L,LUO R Y,CHEN T X.New idea for stratospheric communications-Google Loon[J].Communications Technology,2015,48(12):125-129(in Chinese).
[4] ATHAR R,MATTHEWS T,LAVIGNE J,et al.Stratospheric C4ISR unmanned station (STRATACUS)[C]//AIAA Balloon Systems Conference.Reston:AIAA,2017:1-25.
[5] 王艳奎.临近空间飞行器应用前景及发展分析[J].国防科技,2009,30(2):20-24.WANG Y K.An analysis on application prospects and development of near-space vehicles[J].National Defense Science & Technology,2009,30(2):20-24(in Chinese).
[6] 常晓飞,白云飞,符文星,等.基于平流层特殊风场的浮空器定点方案研究[J].西北工业大学学报,2014,32(1):12-17.CHANG X F,BAI Y F,FU W X,et al.Research on fixed-point aerostat based on its special stratosphere wind field[J].Journal of Northwestern Polytechnical,2014,32(1):12-17(in Chinese).
[7] 陈兴权,王解先,谷川.基于主成分分析的BP神经网络在形变预测中的应用[J].大地测量与地球动力学,2008,28(3):72-76.CHEN X Q,WANG J X,GU C.Application of BP neural network based on principal component analysis in deformation forecasting[J].Journal of Geodesy and Geodynamics,2008,28(3):72-76(in Chinese).
[8] HEIKKILÄ U,SHI X,PHIPPS S J,et al.10Be in late deglacial climate simulated by ECHAM5-HAM-Part 2:Isolating the solar signal from 10Be deposition[J].Climate of the Past Discussions,2013,9(5):5627-5657.
[9] 杨晓亮,徐建源,林莘.主成分BP神经网络预测模型在风电场输出功率中的应用[C]//2010输变电年会论文集,2010.YANG X L,XU J Y,LIN X.Application of principal component bp neural network prediction model to output power of wind farm[C]//2010 Annual Conference of Power Transmission and Transformation,2010(in Chinese).
[10] 范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报,2008,28(34):118-123.FAN G F,WANG W S,LIU C,et al.Wind power prediction based on artificial neural network[J].Chinese Journal of Electrical Engineering,2008,28(34):118-123(in Chinese).
[11] 农吉夫,黄文宁.基于主成分分析的BP神经网络长期预报模型[J].广西师范学院学报(自然科学版),2008,25(4):46-51.NONG J F,HUANG W N.Long-term prediction model of BP neural networks based on principle component analysis[J].Journal of Guangxi Normal University(Natural Science Edition),2008,25(4):46-51(in Chinese).
[12] 李春祥,牛东晓,孟丽敏.基于层次分析法和径向基函数神经网络的中长期负荷预测综合模型[J].电网技术,2009,33(2):99-104.LI C X,NIU D X,MENG L M.A comprehensive model of medium and long term load forecasting based on analytic hierarchy process and radial basis function neural network[J].Power System Technology,2009,33(2):99-104(in Chinese).
[13] 张明理,杨晓亮,滕云,等.基于主成分分析与前向反馈传播神经网络的风电场输出功率预测[J].电网技术,2011,35(3):183-187.ZHANG M L,YANG X L,TENG Y,et al.Wind farm output power prediction based on principal component analysis and forward feedback propagation neural network[J].Power System Technology,2011,35(3):183-187(in Chinese).
[14] 常晓飞,尚妮妮,符文星,等.平流层浮空器快速部署平台的建模与仿真[J].宇航学报,2014,35(10):1135-1140.CHANG X F,SHANG N N,FU W X,et al.Modeling and simulation of rapid deployment system for stratospheric aerostat[J].Journal of Astronautics,2014,35(10):1135-1140(in Chinese).
[15] 吕明云,巫资春.高空气球热力学模型与上升过程仿真分析[J].北京航空航天大学学报,2011,37(5):505-509.LV M Y,WU Z C.Thermodynamic model and numerical simulation of high altitude balloon ascending process[J].Journal of Beijing University of Aeronautics and Astronautics,2011,37(5):505-509(in Chinese).
[16] 苗景刚,周江华,杨新.动态过程的飞艇排气特性分析[J].宇航学报,2016,37(2):153-158.MIAO J G,ZHOU J H,YANG X.Analysis of airship exhaust characteristics in dynamic process[J].Journal of Astronautics,2016,37(2):153-158(in Chinese).
[17] 凡永华,于云峰,闫杰.高空飞艇高度控制系统设计及仿真[J].科学技术与工程,2011,11(24):5957-5961.FAN Y H,YU Y F,YAN J.High altitude airship altitude control system design and simulation[J].Science Technology and Engineering,2011,11(24):5957-5961(in Chinese). |