[1] VIOLA P,JONES M.Rapid object detection using a boosted cascade of simple features[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2003:511-518.
[2] DALAL N,TRIGGS B.Histograms of oriented gradients for human detection[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2005:886-893.
[3] FELZENSZWALB P,MCALLESTER D,RAMANAN D.A discriminatively trained,multiscale,deformable part model[C]//IEEE Computer,Society Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2008:1-8.
[4] EVERINGHAM M,GOOL L V,WILLIAMS C K I,et al.The pascal,visual object classes (VOC) challenge[J].International Journal of Computer Vision,2010,88(2):303-338.
[5] 李旭冬,叶茂,李涛.基于卷积神经网络的目标检测研究综述[J].计算机应用研究,2017,34(10):2881-2886.LI X D,YE M,LI T. Review of object detection based on convolutional neural networks[J].Application Research of Computers,2017,34(10):2881-2886(in Chinese).
[6] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2014:580-587.
[7] HE K,ZHANG X,REN S,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2014,37(9):346-361.
[8] GIRSHICK R.Fast R-CNN[C]//IEEE International Conference on Computer Vision.Piscataway,NJ:IEEE Press,2015:1440-1448.
[9] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:Towards real-time object detection with region proposal networks[C]//International Conference on Neural Information Processing Systems.Cambridge:MIT Press,2015:91-99.
[10] LIN T Y,DOLLAR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2017:936-944.
[11] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:Unified,real-time object detection[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2015:779-788.
[12] REDMON J,FARHADI A.YOLO9000:Better,faster,stronger[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2017:6517-6525.
[13] LIU W,ANGUELOV D,ERHAN D,et al.SSD:Single shot multibox detector[C]//European Conference on Computer Vision.Berlin:Springer,2016:21-37.
[14] REDMON J,FARHADI A.YOLOv3:An incremental improvement[EB/OL].(2018-04-08)[2018-09-21].http://cn.arxiv.org/pdf/1804.02767v1.
[15] FU C Y,LIU W,RANGA A,et al.DSSD:Deconvolutional single shot detector[EB/OL].(2017-01-23)[2018-09-21].http://cn.arxiv.org/pdf/1701.06659.
[16] SHEN Z,LIU Z,LI J,et al.DSOD:Learning deeply supervised object detectors from scratch[C]//IEEE International Conference on Computer Vision.Piscataway,NJ:IEEE Press,2017:1937-1945.
[17] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].(2015-03-10)[2018-09-21].http://cn.arxiv.org/pdf/1409.1556.
[18] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//IEEE International Conference on Computer Vision.Piscataway,NJ:IEEE Press,2015:770-778.
[19] SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2016:2818-2826.
[20] IOFFE S,SZEGEDY C.Batch normalization:Accelerating deep network training by reducing internal covariate shift[EB/OL].(2015-03-02)[2018-09-26].https://arxiv.org/abs/1502.03167.
[21] RUSSAKOVSKY O,DENG J,SU H,et al.ImageNet large scale visual recognition challenge[J].International Journal of Computer Vision,2015,115(3):211-252.
[22] BELL S,ZITNICK C L,BALA K,et al.Inside-outside Net:Detecting objects in context with skip pooling and recurrent neural networks[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2016:2874-2883.
[23] DAI J,LI Y,HE K,et al.R-FCN:Object detection via region-based fully convolutional networks[EB/OL].(2016-06-21)[2018-09-26].https://arxiv.org/abs/1605.06409.
[24] HE K,GKIOXARI G,DOLLAR P,et al.Mask R-CNN[C]//IEEE International Conference on Computer Vision.Piscataway,NJ:IEEE Press,2017:1-13. |