留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空活塞发动机涡轮增压器失效关键影响因素分级

鲍梦瑶 丁水汀 李果

鲍梦瑶, 丁水汀, 李果等 . 航空活塞发动机涡轮增压器失效关键影响因素分级[J]. 北京航空航天大学学报, 2019, 45(6): 1071-1080. doi: 10.13700/j.bh.1001-5965.2018.0597
引用本文: 鲍梦瑶, 丁水汀, 李果等 . 航空活塞发动机涡轮增压器失效关键影响因素分级[J]. 北京航空航天大学学报, 2019, 45(6): 1071-1080. doi: 10.13700/j.bh.1001-5965.2018.0597
BAO Mengyao, DING Shuiting, LI Guoet al. Classification of key influence factors for failure of turbo supercharged piston aeroengine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1071-1080. doi: 10.13700/j.bh.1001-5965.2018.0597(in Chinese)
Citation: BAO Mengyao, DING Shuiting, LI Guoet al. Classification of key influence factors for failure of turbo supercharged piston aeroengine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1071-1080. doi: 10.13700/j.bh.1001-5965.2018.0597(in Chinese)

航空活塞发动机涡轮增压器失效关键影响因素分级

doi: 10.13700/j.bh.1001-5965.2018.0597
基金项目: 

国家自然科学基金委员会-中国民航局民航联合研究基金 U1833109

详细信息
    作者简介:

    鲍梦瑶  女, 博士, 副教授。主要研究方向:航空器安全性与适航技术

    通讯作者:

    鲍梦瑶, E-mail: baomengyao@camic.cn

  • 中图分类号: V234+.1

Classification of key influence factors for failure of turbo supercharged piston aeroengine

Funds: 

Joint Fund of National Natural Science Foundation of China and the Civil Aviation Administration of China U1833109

More Information
  • 摘要:

    航空活塞发动机涡轮增压技术的应用大幅增加了动力系统的复杂性,与增压器相关的安全问题日趋严峻。以某型航空活塞发动机及其两级增压器为对象,聚焦失效诱因的判断方法研究,在建立的整机系统模型基础上,提出一种改进的对应分析法实现对增压器失效模式关键影响因素的分级。结果显示:通过列轮廓坐标随关键影响因素的数值偏离程度表明影响大小的分级方法,可以有效辨识出失效的关键影响因素,废气阀直径是影响各工作边界安全裕度的首要因素,需首先加以控制。

     

  • 图 1  两级涡轮增压系统示意图

    Figure 1.  Schematic diagram of two-stage turbo supercharging system

    图 2  航空两级涡轮增压活塞发动机系统模型示意图

    Figure 2.  Schematic diagram of system model for two-stage turbo supercharged piston aeroengine

    图 3  两级涡轮增压实验系统

    Figure 3.  Experimental system of two-stage turbo superchargers

    图 4  输出功率的仿真与实验数据对比

    Figure 4.  Comparison of output power between simulation and experimental data

    图 5  扭矩的仿真与实验数据对比

    Figure 5.  Comparison of torque between simulation and experimental data

    图 6  对应分析大样本点数下的二维散点图[14-16]

    Figure 6.  2D scatter plot with large sample point number for correspondence analysis[14-16]

    图 7  列轮廓坐标F随关键影响因素数值改变而产生的相对位置偏离

    Figure 7.  Changed relative position of column contour coordinates F according to variation of key influence factors

    图 8  增压系统工作边界代理模型数据与仿真模型数据的相对误差

    Figure 8.  Data relative error between surrogate model and simulation model for work boundary of supercharging system

    图 9  增压系统资料矩阵的大样本点数下分析结果

    Figure 9.  Analysis results of data matrices with large sample point number for supercharging system

    图 10  设计可控参数增大不同比例后工作边界安全裕度随关键影响因素产生的相对位置偏离

    Figure 10.  Relative position deviation of working boundary safety margin with key influencing factors is obtained by increasing proportion of design controllable parameters

    图 11  关键影响因素改变产生的工作边界安全裕度相对距离偏离

    Figure 11.  Changed relative distance deviation of working boundary safety margin according to variation of key influence factors

    表  1  某型无人机的飞行包线要求

    Table  1.   Flight envelope requirement of a certain type of UAV

    节气门开度/% 发动机转速范围/(r·min-1) 飞机飞行状态
    115 5200~5800 起飞状态
    100 5000~5500 爬升状态
    90 4800~5500 续航状态(高空或高速)
    80 4500~5500 续航状态(高空或高速)
    70 4200~5500 续航状态(高空或高速)
    60 4000~5500 续航状态
    50 3500~5300 续航状态
    40 3500~5000 续航状态
    30 3000~4500 续航状态
    25 2500~4000 下降状态
    12.5 1500~3500 下降状态
    0~5 1200~2500 怠速状态(一般为地面)
    下载: 导出CSV

    表  2  样本点选取对应的工况点范围

    Table  2.   Range of operating point corresponding to selected sample points

    海拔高度/km 节气门开度/% 发动机转速范围/(r·min-1)
    7 70~100 4200~5500
    10 70~100 4200~5500
    下载: 导出CSV

    表  3  一组设计可控参数的初始仿真条件

    Table  3.   Initial simulation conditions for a set of design controllable parameters

    设计可控参数 下限 上限
    节气门开度e1/% 70 100
    废气阀直径e2/mm 1.5 10.5
    海拔高度e3/km 7 10
    发动机转速e4/(r·min-1) 4 200 5 500
    排气管直径e5/mm 40 60
    下载: 导出CSV
  • [1] National Transportation Safety Board.In reply refer to.A-94-81 and-82[EB/OL].[2019-04-01]. http://www.ntsb.gov/doclib/recletters/1994/A94_81_82.pdf.
    [2] GILBERT G A.FAA will study accidents of turbocharged aircraft[J]. Business & Commercial Aviation, 1994, 75(2):18.
    [3] PETER K.Turbocharger trouble: The finer points of turbocharged engine operation[EB/OL].[2019-04-01]. http://www.planeandpilotmag.com/pilot-talk/ntsb-debriefer/turbocharger-trouble.html.2013-09-24.
    [4] Emergency procedures for turbocharger failures sought[R]. Air Safety Week, 2008, 22(21): 1-5.
    [5] ZHAI L M, LUO Y Y, WANG Z W, et al.Failure analysis and optimization of the rotor system in a diesel turbocharger for rotor speed-up test[J]. Advances in Mechanical Engineering, 2014, 6:1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=07e0fe3bcbb7c594447208fcf38561b5
    [6] 鲍梦瑶, 李果, 丁水汀.基于模型的航空发动机系统安全性研究[J].航空动力学报, 2016, 31(8):2029-2039. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201608030

    BAO M Y, LI G, DING S T.Research on model-based safety analysis for aero-engine[J]. Journal of Aerospace Power, 2016, 31(8):2029-2039(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201608030
    [7] Rotax Aircraft Engine.Operation manual for Rotax engine type 914 F[R]. Gunskirchen: BRP-Rotax GmbH&Co.KG, 2007.
    [8] HIRSCHFELD H O, WISHART J.A connection between correlation and contingency[C]//Mathematical Proceedings of the Cambridge Philosophical Society, 1935: 520-524.
    [9] MICHAEL G.International encyclopedia of the social & behavioral sciences: Correspondence analysis[M]. 2nd ed.Amsterdam: Elsevier, 2015.
    [10] GREENACRE M J.Correspondence analysis in practice[M]. 2nd ed.London: Chapman & Hall/CRC, 2007.
    [11] SOURIAL N, WOLFSON C, ZHU B, et al.Correspondence analysis is a useful tool to uncover the relationships among categorical variables[J]. Journal of Clinical Epidemiology, 2010, 63(6):638-646. doi: 10.1016/j.jclinepi.2009.08.008
    [12] 何晓群.多元统计分析[M]. 2版.北京:中国人民大学出版社, 2008.

    HE X Q.Multivariate statistical analysis[M]. 2nd ed.Beijing:China Renmin University Press, 2008(in Chinese).
    [13] JOBSON J D.Applied multivariate data analysis.Volume 2.Categorical and multivariate methods[M]. New York: Springer Verlag, 1992.
    [14] PUSHA S, GUDI R D, NORONHA S B.Polar classification with correspondence analysis for fault isolation[J]. Journal of Process Control, 2009, 19(4):656-663. doi: 10.1016/j.jprocont.2008.08.003
    [15] FITHIAN W, JOSSE J.Multiple correspondence analysis and the multilogit bilinear model[J]. Journal of Multivariate Analysis, 2017, 157:87-102. doi: 10.1016/j.jmva.2017.02.009
    [16] TAN Q, BRUSGAARD K, KRUSE T A, et al.Correspondence analysis of microarray time-course data in case-control design[J]. Journal of Biomedical Informatics, 2004, 37(5):358-365. doi: 10.1016/j.jbi.2004.06.001
    [17] BOX G E P, WILSON K B.On the experimental attainment of optimum conditions[J]. Joumal of the Royal Statistical Society Series B-Methodological, 1951, 13(1):1-45.
    [18] BOX G E P, DRAPER N R.The choice of a second order rotatable design[J]. Biometrika, 1963, 50(3/4):335-352. doi: 10.2307/2333904
    [19] HAN L, BENSELER S M, TYRRELL P N.Cluster and multiple correspondence analyses in rheumatology:Paths to uncovering relationships in a sea of data[J]. Rheumatic Disease Clinics of North America, 2018, 44(2):349-360. doi: 10.1016/j.rdc.2018.01.013
    [20] MOHAMMAD A G.Reliability analysis of vibrating electronic assemblies using analytical solutions and response surface methodology[J]. Microelectronics Reliability, 2018, 84:238-247. doi: 10.1016/j.microrel.2018.03.029
    [21] 鲍梦瑶.基于模型的航空发动机增压系统安全性分析方法研究[D].北京: 北京航空航天大学, 2013. http://www.cnki.com.cn/Article/CJFDTotal-HKDI201608030.htm

    BAO M Y.Research on model-based safety analysis for aero-engine turbocharging system[D]. Beijing: Beihang University, 2013(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HKDI201608030.htm
    [22] TORRES A, VELDEN M.Perceptual mapping of multiple variable batteries by plotting supplementary variables in correspondence analysis of rating data[J]. Food Quality and Preference, 2007, 18(1):121-129. doi: 10.1016/j.foodqual.2005.09.005
    [23] 薛觉民, 韩春琏.对应分析应用中的量纲问题[J].山西大学学报(自然科学版), 1997, 20(4):435-439. http://www.cnki.com.cn/Article/CJFDTOTAL-SXDR704.017.htm

    XUE J M, HAN C L.On the dimension problem in appliance of correspondence analysis[J]. Journal of Shanxi University(Natural Science Edition), 1997, 20(4):435-439(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-SXDR704.017.htm
    [24] 项可风, 吴启光.试验设计与数据分析[M].上海:上海科学技术出版社, 1989.

    XIANG K F, WU Q G.Experiment design and date processing[M]. Shanghai:Shanghai Scientific & Technical Publishers, 1989(in Chinese).
    [25] 胡延领, 徐斌, 杨世春.基于螺旋桨特性的活塞发动机涡轮废气阀的调节[J].航空动力学报, 2011, 26(8):1814-1818. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201108022

    HU Y L, XU B, YANG S C.Regulating turbine exhaust valve about piston engine based on analyzing propeller[J]. Journal of Aerospace Power, 2011, 26(8):1814-1818(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201108022
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  698
  • HTML全文浏览量:  126
  • PDF下载量:  480
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-17
  • 录用日期:  2019-01-04
  • 网络出版日期:  2019-06-20

目录

    /

    返回文章
    返回
    常见问答