留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于速度障碍法的飞行冲突解脱与恢复策略

王泽坤 吴明功 温祥西 蒋旭瑞 高阳阳

王泽坤, 吴明功, 温祥西, 等 . 基于速度障碍法的飞行冲突解脱与恢复策略[J]. 北京航空航天大学学报, 2019, 45(7): 1294-1302. doi: 10.13700/j.bh.1001-5965.2018.0650
引用本文: 王泽坤, 吴明功, 温祥西, 等 . 基于速度障碍法的飞行冲突解脱与恢复策略[J]. 北京航空航天大学学报, 2019, 45(7): 1294-1302. doi: 10.13700/j.bh.1001-5965.2018.0650
WANG Zekun, WU Minggong, WEN Xiangxi, et al. Flight collision resolution and recovery strategy based on velocity obstacle method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1294-1302. doi: 10.13700/j.bh.1001-5965.2018.0650(in Chinese)
Citation: WANG Zekun, WU Minggong, WEN Xiangxi, et al. Flight collision resolution and recovery strategy based on velocity obstacle method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1294-1302. doi: 10.13700/j.bh.1001-5965.2018.0650(in Chinese)

基于速度障碍法的飞行冲突解脱与恢复策略

doi: 10.13700/j.bh.1001-5965.2018.0650
基金项目: 

国家自然科学基金 71801221

陕西省自然科学基础研究计划 2018JQ7004

详细信息
    作者简介:

    王泽坤 男, 硕士研究生。主要研究方向:冲突探测与解脱

    吴明功 男, 教授, 硕士生导师。主要研究方向:空中交通管理、管制指挥与安全

    温祥西 男, 博士, 讲师。主要研究方向:冲突探测与解脱

    蒋旭瑞 男, 硕士。主要研究方向:冲突探测与解脱

    高阳阳 男, 硕士。主要研究方向:航空兵指挥自动化

    通讯作者:

    温祥西, E-mail: wxxajy@163.com

  • 中图分类号: V355.1

Flight collision resolution and recovery strategy based on velocity obstacle method

Funds: 

National Natural Science Foundation of China 71801221

Natural Science Basic Research Plan in Shaanxi Province of China 2018JQ7004

More Information
  • 摘要:

    针对飞行中的冲突解脱和航迹恢复问题,在速度障碍法模型的基础上提出了一种几何优化的方法,并对这个问题进行了严格的数学描述。首先根据飞机之间的相对位置和速度关系,确定其冲突类型,以及是否满足各解脱策略的条件,选取相应的解脱策略,待冲突解脱完成后,飞机恢复至原航线飞行。然后通过几何分析,理论推导,该模型能够有效解决飞行冲突,并且具体给出冲突解脱和航迹恢复的位置。最后在仿真中,所提方法根据不同场景能够自主选择冲突解脱策略,结果显示该方法简单高效,并且在航迹恢复过程中不引入新的飞行冲突。

     

  • 图 1  安全保护区模型

    Figure 1.  Safety protection zone model

    图 2  速度障碍模型

    Figure 2.  Velocity obstacle model

    图 3  有时间约束的速度障碍模型

    Figure 3.  Velocity obstacle model with time constraints

    图 4  高度解脱

    Figure 4.  Elevation resolution

    图 5  速度解脱

    Figure 5.  Speed resolution

    图 6  飞机相对位置示意图

    Figure 6.  Schematic diagram of relative position of aircraft

    图 7  速度解脱航迹恢复

    Figure 7.  Track recovery with speed resolution

    图 8  航向解脱

    Figure 8.  Heading resolution

    图 9  航向解脱航迹恢复

    Figure 9.  Track recovery with heading resolution

    图 10  双机冲突解脱流程

    Figure 10.  Collision resolution process of two aircraft

    图 11  同向飞行高度解脱(场景1)

    Figure 11.  Elevation resolution for the same track of flight (Scene 1)

    图 12  逆向飞行航向解脱(场景2)

    Figure 12.  Heading resolution for opposite track of flight (Scene 2)

    图 13  交叉飞行高度解脱(场景3)

    Figure 13.  Elevation resolution for cross track of flight (Scene 3)

    图 14  交叉飞行速度解脱(场景4)

    Figure 14.  Speed resolution for cross track of flight (Scene 4)

    表  1  位置信息

    Table  1.   Position information

    场景 起点/km 航向/(°) 速度/(km·h-1) 仿真步长/h
    1 (0, 200, 4.2) 90 800 0.001
    (110, 200, 4.2) 90 700
    2 (200, 200, 4.2) 90 800 0.001
    (250, 200, 4.2) 270 800
    3 (0, 100, 4.2) 90 800 0.001
    (100, 0, 4.2) 0 800
    4 (0, 100, 4.2) 75 800 0.01
    (100, 0, 4.2) 15 800
    下载: 导出CSV

    表  2  策略选取

    Table  2.   Strategy selection

    场景 类型 冲突解脱所需速度/(km·h-1) 间隔s/km 距离l/km 判断 冲突解脱方式
    小速度解脱 大速度解脱
    1 同向 110 12.78 sl ER
    2 逆向 50 53.25 sl HR
    3 交叉 465.4 1 208.9 141.42 41.43 v1∉[600, 900] km/h & v1∉[600, 900] km/h ER
    4 交叉 631.3 609.8 141.42 32.22 v1∈[600, 900] km/h & v1∈[600, 900] km/h SR
    下载: 导出CSV

    表  3  飞行状态改变点

    Table  3.   Flight state change point

    场景 冲突解脱点/km 航迹恢复点/km 切入原航迹点/km
    1 (778.4, 200, 4.2) (960.8, 200, 4.5) (983.2, 200, 4.2)
    2 (200, 200, 4.2) (226.5, 211.3, 4.2) (253, 200, 4.2)
    3 (71.2, 100, 4.2) (110.4, 100, 4.5) (132.8, 100, 4.2)
    4 (88.3, 123.7, 4.2) (132.8, 135.6, 4.2) (200.1, 153.6, 4.2)
    下载: 导出CSV
  • [1] BILIMORIA K D.A geometric optimization approach to aircraft conflict resolution: AIAA-2000-4265[R].Reston: AIAA, 2000.
    [2] BILIMORIA K D, SRIDHAR B, CHATTERJI G B.FACET: Future ATM concepts evaluation tool[C]//3rd USA/Europe Air Traffic Management R&D Seminar, 2000. doi: 10.2514/atcq.9.1.1
    [3] HWANG I, KIM J, TOMLIN C.Protocol-based conflict resolution for air traffic control[C]//7th USA/Europe Air Traffic Management R&D Seminar, 2007. doi: 10.2514/atcq.15.1.1
    [4] GESER A, MUNOZ C.A geometric approach to strategic conflict detection and resolution[C]//Digital Avionics Systems Conference.Piscataway, NJ: IEEE Press, 2002, 1(6B): 1-11. https://ieeexplore.ieee.org/document/1067985
    [5] ZHANG Y, ZHANG M, YU J.Real-time flight conflict detection and release based on multi-agent system[C]//IOP Conference Series: Earth and Environmental Science.Bristol: IOP Publishing, 2018: 032053.
    [6] GOSS J, RAJVANSHI R, SUBBARAO K.Aircraft conflict detection and resolution using mixed geometric and collision cone approaches: AIAA-2004-4879[R].Reston: AIAA, 2004.
    [7] MUELLER T, SCHLEICHER D, BILIMORIA K D.Conflict detection and resolution with traffic flow constraints: AIAA-2002-4445[R].Reston: AIAA, 2002.
    [8] 李雄, 徐肖豪, 朱承元.基于几何算法的空中交通改航路径规划[J].系统工程, 2008, 26(8):37-40. doi: 10.3969/j.issn.1001-4098.2008.08.007

    LI X, XU X H, ZHU C Y.Air traffic reroute planning based on geometry algorithm[J].Systems Engineering, 2008, 26(8):37-40(in Chinese). doi: 10.3969/j.issn.1001-4098.2008.08.007
    [9] BERG J V D, LIN M, MANOCHA D.Reciprocal velocity obstacles for real-time multi-agent navigation[C]//2008 IEEE International Conference on Robotics and Automation.Piscataway, NJ: IEEE Press, 2008: 1928-1935. https://ieeexplore.ieee.org/document/4543489
    [10] BERG J V D, GUY S, LIN M, et al.Reciprocal n-body collision avoidance[C]//The 14th International Symposium ISRR.Berlin: Springer, 2011: 3-19.
    [11] DURAND N, BARNIER N.Does ATM need centralized coordination Autonomous conflict resolution analysis in a constrained speed environment[C]//11th USA/E Air Traffic Management R&D Seminar, 2015. doi: 10.2514/atcq.23.4.325
    [12] ALLIGNOL C, BARNIER N, DURAND N, et al.Assessing the robustness of a UAS detect & avoid algorithm[C]//12th USA/Europe Air Traffic Management R&D Seminar, 2017.
    [13] 杨秀霞, 周硙硙, 张毅.基于速度障碍圆弧法的UAV自主避障规划研究[J].系统工程与电子技术, 2017, 39(11):168-176. http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201701025

    YANG X X, ZHOU W W, ZHANG Y.Automatic obstacle-avoidance planning for UAV based on velocity obstacle arc method[J].Systems Engineering and Electronics, 2017, 39(11):168-176(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201701025
    [14] 杨秀霞, 张毅, 周硙硙.一种动态不确定环境下UAV自主避障算法[J].系统工程与电子技术, 2017, 39(11):2546-2552. doi: 10.3969/j.issn.1001-506X.2017.11.23

    YANG X X, ZHANG Y, ZHOU W W.Automatic obstacle avoidance algorithm for UAV in dynamic uncertain environment[J].Systems Engineering and Electronics, 2017, 39(11):2546-2552(in Chinese). doi: 10.3969/j.issn.1001-506X.2017.11.23
    [15] 蒋旭瑞, 吴明功, 温祥西, 等.基于合作博弈的多机飞行冲突解脱策略[J].系统工程与电子技术, 2018, 40(11):2482-2490. doi: 10.3969/j.issn.1001-506X.2018.11.14

    JIANG X R, WU M G, WEN X X, et al.Conflict resolution of multi-aircraft based on the cooperative game[J].Systems Engineering and Electronics, 2018, 40(11):2482-2490(in Chinese). doi: 10.3969/j.issn.1001-506X.2018.11.14
    [16] 吴明功, 王泽坤, 温祥西, 等.飞行冲突解脱的几何优化模型[J].系统工程与电子技术, 2019, 41(4):863-869. http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201904024

    WU M G, WANG Z K, WEN X X, et al.Aircraft conflict resolution model based on geometric optimization[J].Systems Engineering and Electronics, 2019, 41(4):863-869(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201904024
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  1421
  • HTML全文浏览量:  40
  • PDF下载量:  447
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-12
  • 录用日期:  2019-03-22
  • 网络出版日期:  2019-07-20

目录

    /

    返回文章
    返回
    常见问答