留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间光学遥感器真空热试验工装模块化设计

周泽鑫 孙志强 徐冰 洪扬

周泽鑫, 孙志强, 徐冰, 等 . 空间光学遥感器真空热试验工装模块化设计[J]. 北京航空航天大学学报, 2019, 45(8): 1544-1551. doi: 10.13700/j.bh.1001-5965.2018.0679
引用本文: 周泽鑫, 孙志强, 徐冰, 等 . 空间光学遥感器真空热试验工装模块化设计[J]. 北京航空航天大学学报, 2019, 45(8): 1544-1551. doi: 10.13700/j.bh.1001-5965.2018.0679
ZHOU Zexin, SUN Zhiqiang, XU Bing, et al. Modularization design of vacuum thermal test frock for space optical remote sensor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1544-1551. doi: 10.13700/j.bh.1001-5965.2018.0679(in Chinese)
Citation: ZHOU Zexin, SUN Zhiqiang, XU Bing, et al. Modularization design of vacuum thermal test frock for space optical remote sensor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1544-1551. doi: 10.13700/j.bh.1001-5965.2018.0679(in Chinese)

空间光学遥感器真空热试验工装模块化设计

doi: 10.13700/j.bh.1001-5965.2018.0679
基金项目: 

国家自然科学基金 51576213

中南大学中央高校基本科研业务费专项资金 2018zzts495

详细信息
    作者简介:

    周泽鑫  男, 硕士研究生。主要研究方向:热设计与传热优化

    孙志强   男, 博士, 教授, 博士生导师。主要研究方向:多相流理论与测试、热设计与传热优化、能源新技术及应用等

    通讯作者:

    孙志强, E-mail: zqsun@csu.edu.cn

  • 中图分类号: TK124

Modularization design of vacuum thermal test frock for space optical remote sensor

Funds: 

National Natural Science Foundation of China 51576213

the Fundamental Research Funds for the Central Universities of Central South University 2018zzts495

More Information
  • 摘要:

    针对空间光学遥感器在空间环境地面模拟试验中舱板温度分布不均的问题,运用模块化思想对某型号空间光学遥感器工装的舱板结构开展了优化设计。将舱板按照温度分布进行分块,提出模块化拼装和模块化热控2种设计方案,模块化拼装是对舱板及其表面加热片进行独立分块划分,模块化热控则是将舱板视为整体,仅对其表面的加热片进行分块设计。结果表明:模块化热控的舱板平均温度偏差为0.205 K,低于未模块化设计的0.87 K和模块化拼装的0.30 K,提高了舱板的温度均匀性。同时,模块化拼装改善了舱板温度分布,使得符合热控要求的测点比例由34.8%提高到96.7%,但独立划分的模块之间仍存在一定温差;模块化热控则消除了模块间的温差,将符合热控要求的测点比例进一步提高到100%,完全满足热控要求。

     

  • 图 1  空间环模地面模拟试验系统

    Figure 1.  System of space environment ground simulation experiment

    图 2  工装模型

    Figure 2.  Frock model

    图 3  计算模型

    Figure 3.  Calculation model

    图 4  未模块化设计的舱板温度分布

    Figure 4.  Temperature distribution of cabin plates without modularization design

    图 5  舱板模块化设计方案

    Figure 5.  Modularization design scheme of cabin plates

    图 6  模块化拼装的舱板温度分布

    Figure 6.  Temperature distribution of cabin plates adopting modularization assembly

    图 7  模块化热控的舱板温度分布

    Figure 7.  Temperature distribution of cabin plates adopting modularization thermal control

    图 8  温度偏差对比

    Figure 8.  Comparison of temperature deviation

    表  1  舱板参数

    Table  1.   Parameters of cabin plates

    舱板 长×宽×厚/(mm×mm×mm) 热控要求/K 发射率
    内壁 外壁
    +X 1624×1500×5 308.15 0.10 0.65
    -X 303.15 0.10 0.90
    +Y 1500×780×5 298.15 0.03 0.65
    -Y 303.15 0.90 0.90
    +Z 1624×780×5 298.15 0.03 0.65
    -Z 303.15 0.03 0.65
    下载: 导出CSV

    表  2  不同网格数下舱板的热流密度

    Table  2.   Heat flux of cabin plates at various grid numbers

    舱板 面积/m2 热流密度/(W·m-2)
    54万网格 138万网格 667万网格
    +X 2.436 324.7 326.9 326.3
    -X 2.320 245.9 247.6 248.6
    +Y 1.135 193.6 192 190.8
    -Y 1.170 390.3 392.5 393.4
    +Z 0.682 287.6 285 286.1
    -Z 1.165 241 239.9 238.6
    下载: 导出CSV

    表  3  舱板温度统计结果

    Table  3.   Statistical results of cabin plate temperatures

    舱板 平均温度偏差/K 标准温度偏差/K
    试验 模块化拼装 模块化热控 试验 模块化拼装 模块化热控
    +X 0.039 0.003 0.002 0.156 0.013 0.010
    -X 0.795 0.253 0.223 1.172 0.309 0.227
    +Y 0.391 0.618 0.269 0.637 0.693 0.295
    -Y 1.310 0.265 0.216 2.265 0.316 0.217
    +Z 1.309 0.260 0.246 2.052 0.268 0.255
    -Z 1.277 0.251 0.235 1.815 0.307 0.247
    总体 0.873 0.299 0.205 1.466 0.381 0.226
    下载: 导出CSV
  • [1] 麻慧涛, 钟奇, 范含林, 等.微型卫星热控制技术研究[J].航天器工程, 2006, 15(2):6-13. http://www.cnki.com.cn/Article/CJFDTOTAL-HTGC200602001.htm

    MA H T, ZHONG Q, FAN H L, et al.Investigation of the thermal control technology for micro-satellite[J]. Spacecraft Engineering, 2006, 15(2):6-13(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HTGC200602001.htm
    [2] 李春林.空间光学遥感器热控技术研究[J].宇航学报, 2014, 35(8):863-870. doi: 10.3873/j.issn.1000-1328.2014.08.001

    LI C L.Research on space optical remote sensor thermal control technique[J]. Journal of Astronautics, 2014, 35(8):863-870(in Chinese). doi: 10.3873/j.issn.1000-1328.2014.08.001
    [3] 齐彧, 孙俊, 师鹏, 等.航天器相对运动地面动力学实验研究[J].北京航空航天大学学报, 2016, 42(10):2118-2129. https://bhxb.buaa.edu.cn/CN/abstract/abstract13622.shtml

    QI Y, SUN J, SHI P, et al.Research for ground-based astrodynamical experiment for spacecraft relative motion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(10):2118-2129(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract13622.shtml
    [4] 李延伟, 张洪文, 程志峰, 等.隔热材料在高空光学遥感器热控系统中的应用[J].仪器仪表学报, 2013, 34(12):44-47. http://www.cnki.com.cn/Article/CJFDTOTAL-YQXB2013S1009.htm

    LI Y W, ZHANG H W, CHENG Z F, et al.Application of insulation material in thermal control system of altitude optical sensor[J]. Chinese Journal of Scientific Instrument, 2013, 34(12):44-47(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-YQXB2013S1009.htm
    [5] 王领华, 吴清文, 郭亮, 等.高分辨率可见光航空相机的热设计及热分析[J].红外与激光工程, 2012, 41(5):1236-1243. doi: 10.3969/j.issn.1007-2276.2012.05.022

    WANG L H, WU Q W, GUO L, et al.Thermal design and analysis for the high resolution visible light aeronautic camera[J]. Infrared and Laser Engineering, 2012, 41(5):1236-1243(in Chinese). doi: 10.3969/j.issn.1007-2276.2012.05.022
    [6] 吴雪峰, 丁亚林, 吴清文.临近空间光学遥感器热设计[J].光学精密工程, 2010, 18(5):1159-1165. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201005020

    WU X F, DING Y L, WU Q W.Thermal design for near space optical remote sensor[J]. Optics and Precision Engineering, 2010, 18(5):1159-1165(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201005020
    [7] 程雪涛, 梁新刚.辐射[火积]耗散与空间辐射器温度场均匀化的关系[J].工程热物理学报, 2012, 33(2):311-314. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201202035

    CHENG X T, LIANG X G.Relationship between entransy dissipation of thermal radiation and homogeniantion of temperature field for thermal radiator in space[J]. Journal of Engineering Thermophysics, 2012, 33(2):311-314(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201202035
    [8] 杨献伟, 吴清文, 李书胜, 等.空间光学遥感器热设[J].中国光学, 2011, 4(2):139-146. doi: 10.3969/j.issn.2095-1531.2011.02.007

    YANG X W, WU Q W, LI S S, et al.Thermal design of space optical remote sensor[J]. Chinese Optics, 2011, 4(2):139-146(in Chinese). doi: 10.3969/j.issn.2095-1531.2011.02.007
    [9] 关奉伟, 刘巨, 于善猛, 等.空间光学遥感器热试验外热流模拟及程控实现[J].中国光学, 2014, 7(6):982-988. http://d.old.wanfangdata.com.cn/Periodical/zggxyyygxwz201406015

    GUAN F W, LIU J, YU S M, et al.Space heat flux simulation and programmable load for thermal test of space optical remote sensor[J]. Chinese Optics, 2014, 7(6):982-988(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zggxyyygxwz201406015
    [10] BATURKIN V, ZHUK S, VOJTA J, et al.Elaboration of thermal control systems on heat pipes for microsatellites magions 4, 5 and BIRD[J]. Applied Thermal Engineering, 2003, 23(9):1109-1117. doi: 10.1016/S1359-4311(03)00040-1
    [11] 胡帼杰, 刘百麟, 裴胜伟, 等.基于热管网络的近地圆轨道通信卫星热控技术[J].工程热物理学报, 2017, 38(6):1338-1343. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201706033

    HU G J, LIU B L, PEI S W, et al.Thermal control technology for LEO commutation satellite platform based on 3D heat pipe network[J]. Journal of Engineering Thermophysics, 2017, 38(6):1338-1343(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201706033
    [12] 闫华锋, 仲伟俊.复杂产品系统模块化分解模型及应用研究[J].北京航空航天大学学报, 2017, 43(4):654-659. https://bhxb.buaa.edu.cn/CN/abstract/abstract13951.shtml

    YAN H F, ZHONG W J.Modular decomposition model of complex product system and its application[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4):654-659(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract13951.shtml
    [13] 徐小明, 张武翔, 丁希仑.基于模块化的缠绕机设计方法[J].北京航空航天大学学报, 2018, 44(4):746-758. https://bhxb.buaa.edu.cn/CN/abstract/abstract14374.shtml

    XU X M, ZHANG W X, DING X L.Modular design method for filament winding machine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4):746-758(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract14374.shtml
    [14] 刘建功, 王晓帆, 刘扬, 等.环形构型的模块化机器人系统动态运动规划[J].机械设计与制造, 2018(9):61-67. doi: 10.3969/j.issn.1001-3997.2018.09.017

    LIU J G, WANG X F, LIU Y, et al.Research on dynamic motion planning of modular robot system with annular configuration[J]. Machinery Design & Manufacture, 2018(9):61-67(in Chinese). doi: 10.3969/j.issn.1001-3997.2018.09.017
    [15] 胡毅, 黄炜, 胡鹏浩, 等.自驱动关节臂坐标测量机模块化关节设计[J].光学精密工程, 2018, 25(6):2021-2029. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201808023

    HU Y, HUANG W, HU P H, et al.Design of modular articulation in self-driven AACMM[J]. Optics and Precision Engineering, 2018, 25(6):2021-2029(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201808023
    [16] YIN L, HE M L, XIE W B, et al.A quantitative model of universalization, serialization and modularization on equipment systems[J]. Physica A:Statistical Mechanics and Its Applications, 2018, 508:359-366. doi: 10.1016/j.physa.2018.05.120
    [17] PANKAJ C P, VINIT P, JAYANTH J, et al.Task equivocality and process modularity in R&D offshore collaboration projects[J]. Journal of Business Research, 2018, 93(C):12-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=46975cdd50efb00e40f0a81e5732cbf8
    [18] 刘亮堂, 王安良.星载电子器件用空气射流散热特[J].北京航空航天大学学报, 2015, 41(8):1553-1559. https://bhxb.buaa.edu.cn/CN/abstract/abstract13370.shtml

    LIU L T, WANG A L.Characteristic of air jet impingement cooling performance for electronic equipment of satellite[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(8):1553-1559(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract13370.shtml
    [19] 郭磊.对FLUENT辐射模型的数值计算与分析[J].制冷与空调, 2014, 28(3):358-360. doi: 10.3969/j.issn.1671-6612.2014.03.022

    GUO L.Numerical calculation and analysis of the FLUENT radiation model[J]. Refrigeration and Air Conditioning, 2014, 28(3):358-360(in Chinese). doi: 10.3969/j.issn.1671-6612.2014.03.022
    [20] 字贵才, 贺卫亮.临近空间环境下封闭方腔内耦合换热特性[J].北京航空航天大学学报, 2018, 44(6):1283-1293. https://bhxb.buaa.edu.cn/CN/abstract/abstract14512.shtml

    ZI G C, HE W L.Conjugate heat transfer characteristics of enclosure cavity in near space environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6):1283-1293(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract14512.shtml
    [21] 白心爱.辐射换热角系数的计算[J].红外, 2008, 29(8):30-33. doi: 10.3969/j.issn.1672-8785.2008.08.007

    BAI X A.Calculation of radiation heat transfer angle coefficient[J]. Infrared, 2008, 29(8):30-33(in Chinese). doi: 10.3969/j.issn.1672-8785.2008.08.007
    [22] 刘大龙, 赵辉辉.建筑围合空间内辐射角系数的简化计算[J].工程热物理学报, 2018, 39(5):1118-1124. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201805029

    LIU D L, ZHAO H H.Simplified calculation of configuration factor in enclosed building space[J]. Journal of Engineering Thermophysics, 2018, 39(5):1118-1124(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201805029
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  517
  • HTML全文浏览量:  69
  • PDF下载量:  297
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-21
  • 录用日期:  2018-12-21
  • 网络出版日期:  2019-08-20

目录

    /

    返回文章
    返回
    常见问答