留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机动发射条件下空间飞行器上升段弹道设计

鲜勇 任乐亮 郭玮林 张大巧 李冰

鲜勇, 任乐亮, 郭玮林, 等 . 机动发射条件下空间飞行器上升段弹道设计[J]. 北京航空航天大学学报, 2019, 45(9): 1713-1722. doi: 10.13700/j.bh.1001-5965.2018.0782
引用本文: 鲜勇, 任乐亮, 郭玮林, 等 . 机动发射条件下空间飞行器上升段弹道设计[J]. 北京航空航天大学学报, 2019, 45(9): 1713-1722. doi: 10.13700/j.bh.1001-5965.2018.0782
XIAN Yong, REN Leliang, GUO Weilin, et al. Design of ascent trajectory of space vehicle in mobile launch condition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1713-1722. doi: 10.13700/j.bh.1001-5965.2018.0782(in Chinese)
Citation: XIAN Yong, REN Leliang, GUO Weilin, et al. Design of ascent trajectory of space vehicle in mobile launch condition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1713-1722. doi: 10.13700/j.bh.1001-5965.2018.0782(in Chinese)

机动发射条件下空间飞行器上升段弹道设计

doi: 10.13700/j.bh.1001-5965.2018.0782
详细信息
    作者简介:

    鲜勇  男, 博士, 教授, 博士生导师。主要研究方向:飞行器设计、制导理论等

    任乐亮  男, 硕士研究生。主要研究方向:飞行器导航与设计

    通讯作者:

    鲜勇, E-mail: xy603xy@163.com

  • 中图分类号: V412.1

Design of ascent trajectory of space vehicle in mobile launch condition

More Information
  • 摘要:

    为提高空间飞行器机动发射能力,在飞行中段轨迹确定情况下,以入轨点位置、高度、速度、速度方位角、弹道倾角等作为终端约束,设计上升段弹道,实现以基准发射点为中心,一定范围内任意发射点上升段与飞行中段高精度交班。考虑到上升段终端入轨点约束条件多、精度要求高,且上升段弹道具有非线性、强耦合的特点,研究设计了二级、三级能量管理模型和变射面横向机动模型,并采用加入混合扰动算子的梯度粒子群算法对上升段弹道进行求解。仿真结果表明:优化设计的变射面横向机动弹道能够实现与飞行中段的高精度交班,上升段终端入轨点位置、高度、速度、速度方位角和弹道倾角平均偏差分别为27.506 2 m、2.125 4 m、1.652 2 m/s、0.072 8°和0.029 0°。

     

  • 图 1  空间飞行器机动发射示意图

    Figure 1.  Schematic diagram of mobile launch of space vehicle

    图 2  俯仰程序角交变模型示意图

    Figure 2.  Schematic diagram of alternating model of pitching program angle

    图 3  高度、横向机动距离随时间变化曲线

    Figure 3.  Variation curves of height and transverse maneuvering distance with time

    图 4  速度、横向速度随时间变化曲线

    Figure 4.  Variation curves of velocity and transverse velocity with time

    图 5  绝对俯仰角随时间变化曲线

    Figure 5.  Variation curve of absolute pitch angle with time

    图 6  绝对偏航角随时间变化曲线

    Figure 6.  Variation curve of absolute yaw angle with time

    图 7  前70 s攻角随时间变化曲线

    Figure 7.  Variation curve of first 70 s' attack angle with time

    图 8  当地弹道倾角随时间变化曲线

    Figure 8.  Variation curve of local ballistic inclination with time

    图 9  100个随机发射点位置

    Figure 9.  Position of 100 stochastic launch sites

    图 10  高度随时间变化仿真

    Figure 10.  Variation simulation of height with time

    图 11  弹道三维仿真

    Figure 11.  Three-dimensional simulation of ballistic

    图 12  动压随时间变化仿真

    Figure 12.  Variation simulation of dynamic pressure with time

    图 13  法向过载随时间变化仿真

    Figure 13.  Variation simulation of normal overload with time

    表  1  优化变量取值范围及优化结果

    Table  1.   Range of value for variable optimization and results

    变量下限上限优化结果
    θ0/(°)-2.02.00.877 1
    Tcz/s3.09.03.872 8
    Tfd/s3.016.012.127 5
    /(°)3.98.05.467 1
    a10.50.60.570 0
    /(°)3.012.08.752 0
    a20.050.290.281 0
    /((°)·s-1)-3.00-3.000 0
    /((°)·s-1)-3.02.00.151 3
    /((°)·s-1)-2.04.00.983 6
    /((°)·s-1)-3.03.01.151 3
    /((°)·s-1)-4.04.0-2.497 0
    ψ/(°)-25.025.024.205 7
    k1143.0183.0182.113 3
    k23.012.04.602 8
    下载: 导出CSV

    表  2  横向机动上升段弹道入轨点参数偏差

    Table  2.   Parameter deviation of injection point of transverse maneuvering ascent trajectory

    入轨点参数与基准弹道入轨点偏差
    位置/m18.737 5
    高度/m0.516 4
    速度/(m·s-1)0.775 6
    速度方位角/(°)0.028 8
    弹道倾角/(°)0.009 1
    下载: 导出CSV

    表  3  无变射面横向机动的上升段弹道入轨点参数偏差

    Table  3.   Parameter deviation of injection point of ascent trajectory without changeable-launching-plane transverse maneuvering

    入轨点参数与基准弹道入轨点偏差
    位置/m1.547 4
    高度/m0.181 3
    速度/(m·s-1)0.271 0
    速度方位角/(°)2.320 1
    弹道倾角/(°)0.005 5
    下载: 导出CSV

    表  4  104条弹道入轨点参数偏差统计

    Table  4.   Statistics of parameter deviation of 104 ballistic injection points

    入轨点参数平均偏差最大偏差
    位置/m27.506 270.431 9
    高度/m2.125 47.003 6
    速度/(m·s-1)1.652 24.769 1
    速度方位角/(°)0.072 80.289 6
    弹道倾角/(°)0.029 00.124 6
    下载: 导出CSV
  • [1] 陈法龙.高超声速滑翔飞行器弹道快速规划研究[D].长沙: 国防科学技术大学, 2012. http://cdmd.cnki.com.cn/article/cdmd-90002-1014047580.htm

    CHEN F L.Research of rapid trajectory planning for hypersonic glide vehicle[D].Changsha: National University of Defense Technology, 2012(in Chinese). http://cdmd.cnki.com.cn/article/cdmd-90002-1014047580.htm
    [2] 谢愈, 潘亮, 谷学强, 等.高超声速飞行器多目标复杂约束滑翔弹道优化[J].国防科技大学学报, 2017, 39(2):9-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gfkjdxxb201702002

    XIE Y, PAN L, GU X Q, et al.Gliding trajectory optimization with multiple objectives and complicated constraints for hypersonic vehicles[J].Journal of National University of Defense Technology, 2017, 39(2):9-17(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gfkjdxxb201702002
    [3] 陈铁彪, 龚旻, 王洪波, 等.临近空间可变形滑翔飞行器轨迹优化与性能分析[J].宇航学报, 2018, 39(9):944-952. http://d.old.wanfangdata.com.cn/Periodical/yhxb201809001

    CHEN T B, GONG M, WANG H B, et al.Trajectory optimization and performance analysis of the near-space morphing glide vehicles[J].Journal of Astronautics, 2018, 39(9):944-952(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/yhxb201809001
    [4] 王青, 莫华东, 吴振东, 等.基于能量的高超声速飞行器再入混合制导方法[J].北京航空航天大学学报, 2014, 40(5):579-584. https://bhxb.buaa.edu.cn/CN/abstract/abstract12913.shtml

    WANG Q, MO H D, WU Z D, et al.Energy-based hybrid reentry guidance for hypersonic vehicles[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(5):579-584(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract12913.shtml
    [5] 何睿智, 刘鲁华, 汤国建, 等.机动发射条件下助推滑翔导弹射击诸元快速解算[J].国防科技大学学报, 2017, 39(4):56-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gfkjdxxb201704009

    HE R Z, LIU L H, TANG G J, et al.Efficient method for firing data calculation of boost-glide missile in mobile condition[J].Journal of National University of Defense Technology, 2017, 39(4):56-61(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gfkjdxxb201704009
    [6] 郭玮林, 鲜勇, 张大巧, 等.高超声速飞行器助推段弹道快速计算方法[J].中国惯性技术学报, 2018, 26(1):109-114. http://d.old.wanfangdata.com.cn/Periodical/zggxjsxb201801019

    GUO W L, XIAN Y, ZHANG D Q, et al.Fast calculation method of booster trajectory for hypersonic vehicle[J].Journal of Chinese Inertial Technology, 2018, 26(1):109-114(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zggxjsxb201801019
    [7] 鲜勇, 郭玮林, 张大巧, 等.高超声速飞行器非连续点火助推增程弹道设计[J].固体火箭技术, 2017, 40(3):397-402. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gthjjs201703022

    XIAN Y, GUO W L, ZHANG D Q, et al.Trajectory design of improving range for hypersonic vehicle based on discontinuous booster[J].Journal of Solid Rocket Technology, 2017, 40(3):397-402(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gthjjs201703022
    [8] 任京涛.助推滑导弹上升段多终端约束弹道设计及制导方法研究[D].哈尔滨: 哈尔滨工业大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10213-1014002544.htm

    REN J T.Study on the multi-terminal constraint ballistic design and guidance method of the ascent segment of the boost-glidemissile[D].Harbin: Harbin Institute of Technology, 2013(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10213-1014002544.htm
    [9] WU G, LIU L, WANG Y, et al.Ascent trajectory optimization of hypersonic vehicle based on improved particle swarm algorithm[C]//Chinese Automation Congress.Piscataway, NJ: IEEE Press, 2015: 115-120.
    [10] 李振华, 鲜勇, 雷刚, 等.基于混合粒子群算法的上升段交会弹道快速优化设计[J].航空动力学报, 2015, 30(12):3029-3034. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201512028

    LI Z H, XIAN Y, LEI G, et al.Rapid optimum design of ascent rendezvous trajectory for launch vehicles based on hybrid particle swarm algorithm[J].Journal of Aerospace Power, 2015, 30(12):3029-3034(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201512028
    [11] 陈道君, 龚庆武, 金朝意, 等.基于自适应扰动量子粒子群算法参数优化的支持向量回归机短期风电功率预测[J].电网技术, 2013, 37(4):974-980. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dwjs201304016

    CHEN D J, GONG Q W, JIN Z Y, et al.Short-term wind power prediction based on support vector regression machine optimized by adaptive disturbance quantum-behaved particle swarm optimization[J].Power System Technology, 2013, 37(4):974-980(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dwjs201304016
    [12] 王敏, 唐俊.基于自适应扰动的粒子群优化算法[J].计算机工程与应用, 2014, 50(9):111-115. doi: 10.3778/j.issn.1002-8331.1206-0460

    WANG M, TANG J.Particle swarm optimization based on adaptive disturbance[J].Computer Engineering and Applications, 2014, 50(9):111-115(in Chinese). doi: 10.3778/j.issn.1002-8331.1206-0460
    [13] BERGH F V D, ENGELBRECHT A P.A study of particle swarm optimization particle trajectories[J].Information Sciences, 2006, 176(8):937-971. doi: 10.1016/j.ins.2005.02.003
    [14] 鲜勇, 刘炳琪, 李振华, 等.一种横向机动弹道能量管理方法[J].弹道学报, 2014, 26(2):43-47. doi: 10.3969/j.issn.1004-499X.2014.02.009

    XIAN Y, LIU B Q, LI Z H, et al.An energy management method of trajectory of transversely maneuvering missile[J].Journal of Ballistics, 2014, 26(2):43-47(in Chinese). doi: 10.3969/j.issn.1004-499X.2014.02.009
    [15] 鲜勇, 刘炳琪, 王安民, 等.变射面弹道横向转弯飞行程序的设计与优化[J].弹道学报, 2014, 26(4):30-35. doi: 10.3969/j.issn.1004-499X.2014.04.006

    XIAN Y, LIU B Q, WANG A M, et al.Design and optimization of lateral turning flight program on changeable launching plane trajectory[J].Journal of Ballistics, 2014, 26(4):30-35(in Chinese). doi: 10.3969/j.issn.1004-499X.2014.04.006
    [16] 鲜勇, 李少朋, 李振华, 等.基于梯度粒子群算法的纵横向机动跳跃弹道设计及优化[J].弹道学报, 2015, 27(3):1-6. doi: 10.3969/j.issn.1004-499X.2015.03.001

    XIAN Y, LI S P, LI Z H, et al.Design and optimization of vertical wavy and crosswise maneuvering trajectory based on grads particle swarm algorithm[J].Journal of Ballistics, 2015, 27(3):1-6(in Chinese). doi: 10.3969/j.issn.1004-499X.2015.03.001
    [17] 张毅, 肖龙旭, 王顺宏.弹道导弹弹道学[M].长沙:国防科技大学出版社, 1999.

    ZHANG Y, XIAO L X, WANG S H.Missile ballistics[M].Changsha:National University of Defense Technology Press, 1999(in Chinese).
    [18] 鲜勇, 刘凯, 凌王辉, 等.基于二次点火的飞行器横向转移入轨弹道设计[J].航空动力学报, 2018, 33(2):320-326. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201802009

    XIAN Y, LIU K, LING W H, et al.Trajectory design of launching-plane transforming orbit-injection of spacecraft based on engine twice ignition[J].Journal of Aerospace Power, 2018, 33(2):320-326(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201802009
    [19] 陈喆, 唐胜景, 郭杰.固体火箭主动段终端多约束能量管理制导方法[J].系统工程与电子技术, 2014, 36(12):2484-2489. http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201412024

    CHEN Z, TANG S J, GUO J.Energy management based guidance of solid rocket with multi-constraints[J].Systems Engineering and Electronics, 2014, 36(12):2484-2489(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201412024
    [20] 陈克俊.耗尽关机制导方法研究[J].国防科技大学学报, 1996, 18(3):35-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600107454

    CHEN K J.An approach to depleted shutdown guidance[J].Journal of National University of Defense Technology, 1996, 18(3):35-39(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600107454
    [21] 杨希祥, 江振宇, 张为华.基于粒子群算法的固体运载火箭上升段弹道优化设计研究[J].宇航学报, 2010, 31(5):1304-1309. doi: 10.3873/j.issn.1000-1328.2010.05.008

    YANG X X, JIANG Z Y, ZHANG W H.A particle swarm optimization algorithm-based solid launch vehicle ascent trajectory optimum design[J].Journal of Astronautics, 2010, 31(5):1304-1309(in Chinese). doi: 10.3873/j.issn.1000-1328.2010.05.008
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  581
  • HTML全文浏览量:  24
  • PDF下载量:  292
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-02
  • 录用日期:  2019-02-02
  • 网络出版日期:  2019-09-20

目录

    /

    返回文章
    返回
    常见问答