留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非结构重叠网格显式装配算法

宣传伟 韩景龙

宣传伟, 韩景龙. 非结构重叠网格显式装配算法[J]. 北京航空航天大学学报, 2019, 45(10): 2026-2034. doi: 10.13700/j.bh.1001-5965.2019.0020
引用本文: 宣传伟, 韩景龙. 非结构重叠网格显式装配算法[J]. 北京航空航天大学学报, 2019, 45(10): 2026-2034. doi: 10.13700/j.bh.1001-5965.2019.0020
XUAN Chuanwei, HAN Jinglong. Explicit assembly algorithm of unstructured overset grid[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 2026-2034. doi: 10.13700/j.bh.1001-5965.2019.0020(in Chinese)
Citation: XUAN Chuanwei, HAN Jinglong. Explicit assembly algorithm of unstructured overset grid[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 2026-2034. doi: 10.13700/j.bh.1001-5965.2019.0020(in Chinese)

非结构重叠网格显式装配算法

doi: 10.13700/j.bh.1001-5965.2019.0020
基金项目: 

国家自然科学基金 11472133

江苏高校优势学科建设工程基金 

详细信息
    作者简介:

    宣传伟  男, 博士研究生。主要研究方向:气动弹性力学

    韩景龙  男, 博士, 教授, 博士生导师。主要研究方向:气动弹性力学

    通讯作者:

    韩景龙, E-mail: hjlae@nuaa.edu.cn

  • 中图分类号: V211.3

Explicit assembly algorithm of unstructured overset grid

Funds: 

National Natural Science Foundation of China 11472133

the Priority Academic Program Development of Jiangsu Higher Education Institutions 

More Information
  • 摘要:

    针对重叠网格中洞映射法占用过多物理内存的问题,发展了一种改进型洞映射法;基于相邻单元搜索法,发展了一种基于相邻阵面的贡献单元搜索法;通过将割补法与隐式切割技术相结合提出了一种非结构重叠网格显式装配算法。该算法首先生成一套包围物面的笛卡儿网格,其次存储所有与物面边界相交的笛卡儿网格信息,最后根据所存储笛卡儿网格与所需判断的网格单元的相对位置来判断其是否为洞内单元。在成功判断出所有洞内单元后,以当前洞边界为初始阵面推进,同时以各个网格单元的物面距离为判别标准对重叠区域进行优化,生成最终插值边界。所提算法优化了传统非结构重叠网格装配过程,具有物理内存占用低,贡献单元搜索次数少以及计算效率高等特点。通过2个典型复杂流动算例验证了所提算法的准确性与适用性。

     

  • 图 1  改进型洞映射法产生的笛卡儿网格示意图

    Figure 1.  Cartesian grids of improved hole mapping method

    图 2  基于阵面推进的相邻单元搜索法

    Figure 2.  Neighbor-to-neighbor search algorithm based on advancing front

    图 3  非结构重叠网格显式装配技术

    Figure 3.  Explicit assembly technique of unstructured overset grid

    图 4  30P30N机翼重叠网格图

    Figure 4.  Overset mesh of 30P30N wing

    图 5  30P30N翼面马赫数云图

    Figure 5.  Mach number contour of 30P30N wing surface

    图 6  30P30N翼面压力系数的数值与试验结果对比

    Figure 6.  Comparison of pressure coefficient of 30P30N wing surface between numerical and experimental results

    图 7  Titan Ⅳ非结构重叠网格系统

    Figure 7.  Unstructured overset mesh system for Titan Ⅳ

    图 8  Titan Ⅳ对称面重叠网格

    Figure 8.  Overset mesh of Titan Ⅳ's symmetry plane

    图 9  Titan Ⅳ对称面压力云图

    Figure 9.  Pressure contour of Titan Ⅳ symmetry plane

    图 10  芯级中心线压力分布

    Figure 10.  Pressure distribution along rocket center line

    表  1  不同算法的效率比较

    Table  1.   Comparison of efficiency between different algorithms

    算法 贡献单元搜索次数 时间/s
    本文算法 4 134 1.25
    传统隐式算法 38 815 5.12
    下载: 导出CSV

    表  2  不同算法的性能比较

    Table  2.   Comparison of performance among different algorithms

    性能指标 算法 30P30N Titan Ⅳ
    内存占用/MB 本文算法 77.66 1 023.77
    传统洞映射 151.23 1 903.58
    贡献单元搜索时间/s 本文算法 2.12 29.50
    传统隐式算法 10.35 126.43
    下载: 导出CSV
  • [1] BENEK J A, STEGER J L, DOUGHERTY F C.A flexible grid embedding technique with applications to the Euler equations: AIAA-1983-1944[R].Reston, VA: AIAA, 1983.
    [2] NAKAHASHI K, GUMIYA T.An intergrid boundary definition method for overset unstructured grid approach: AIAA-1999-3304[R].Reston, VA: AIAA, 1999.
    [3] TOGASHI F, NAKAHASHI K, ITO Y, et al.Flow simulation of NAL experimental supersonic airplane/booster separation using overset unstructured grids: AIAA-2000-1007[R].Reston, VA: AIAA, 2000.
    [4] TOGASHI F, ITO Y, MURAYAMA M, et al.Flow simulation of flapping wings of an insect using overset unstructured grid: AIAA-2001-2619[R].Reston, VA: AIAA, 2001.
    [5] TOGASHI F, ITO Y.Extensions of overset unstructured grids to multiple bodies in contact: AIAA-2002-2809[R].Reston, VA: AIAA, 2002.
    [6] TOGASHI F, ITO Y.Overset unstructured grids method for viscous flow computations: AIAA-2003-3405[R].Reston, VA: AIAA, 2003.
    [7] LEE Y L, BAEDER J D.Implicit hole cutting-a new approach for overset grid connectivity: AIAA-2003-4128[R].Reston, VA: AIAA, 2003.
    [8] XIAO T, QIN N, LUO D, et al.Deformable overset grid for multibody unsteady flow simulation[J].AIAA Journal, 2016, 54(8):2392-2406. doi: 10.2514/1.J054861
    [9] XU X, WANG X D, ZHANG M, et al.A parallelized hybrid N-S/DSMC-IP approach based on adaptive structured/unstructured overlapping grids for hypersonic transitional flows[J].Journal of Computational Physics, 2018, 371(15):409-433. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1b9221ba7402ff0dd9f9bb4824ca049c
    [10] MISHRA A, BAEDER J D.Coupled aeroelastic prediction of the effects of leading-edge slat on rotor performance[J].Journal of Aircraft, 2012, 53(1):141-157. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b5217116c6b8d10419560f62f0b8d0f6
    [11] LEE Y, BAEDER J.High-order overset method for blade vortex interaction[C]//AIAA Aerospace Sciences Meeting & Exhibit.Reston, VA: AIAA, 2013: 1-10.
    [12] LOHNER R, SHAROV D, LUO H.Overlapping unstructured grids: AIAA-2001-0439[R].Reston, VA: AIAA, 2001.
    [13] LUO H.An overlapping unstructured grid method for viscous flows: AIAA-2001-2603[R].Reston, VA: AIAA, 2001.
    [14] LANDMANN B, MONTAGNAC M.A highly automated parallel Chimera method for overset grids based on the implicit hole cutting technique[J].International Journal for Numerical Methods in Fluids, 2011, 66(6):778-804. doi: 10.1002/fld.2292
    [15] XU J, CAI J, LIU Q, et al.Flow simulations by enhanced implicit-hole-cutting method on overset grids[J].Journal of Aircraft, 2014, 51(5):1401-1409. doi: 10.2514/1.C032283
    [16] 田书玲.基于非结构网格方法的重叠网格算法研究[D].南京: 南京航空航天大学, 2008.

    TIAN S L.Investigation of overset unstructured grids algorithm[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2008(in Chinese).
    [17] CHO K W, KWON J H, LEE S.Development of a fully systemized Chimera methodology for steady/unsteady problems[J].Journal of Aircraft, 1999, 36(6):973-980. doi: 10.2514/2.2538
    [18] WEY T C.Development of a mesh interface generator for overlapped structured grids: AIAA-1994-1924[R].Reston, VA: AIAA, 1994.
    [19] BENEK J A, STEGER J L, DOUGHERTY F A.A flexible grid embedding technique with application to the Euler equations: AIAA-1983-1944[R].Reston, VA: AIAA, 1983.
    [20] LABOZZETTA W F, GATZKE T D.MACGS-towards the complete grid generation system: AIAA-1994-1923[R].Reston, VA: AIAA, 1994.
    [21] CHIU I T, MEAKIN R.On automating domain connectivity for overset grids: AIAA-1995-0854[R].Reston, VA: AIAA, 1995.
    [22] CRABILL J A, WITHERDEN F D, JAMESON A.A parallel direct cut algorithm for high-order overset methods with application to a spinning golf ball[J].Journal of Computational Physics, 2018, 374:692-723. doi: 10.1016/j.jcp.2018.05.036
    [23] MEAKIN R L.Object X-rays for cutting holes in composite overset structured grid: AIAA-2001-2537[R].Reston, VA: AIAA, 2001.
    [24] YANG X, YANG A, SI J.Efficient numerical techniques for simulating a rotorcraft flow field with overlapping grids[J].AIAA Journal, 2015, 53(5):1372-1383. doi: 10.2514/1.J053426
    [25] NINI M, MOTTA V, BINDOLINO G, et al.Three-dimensional simulation of a complete vertical axis wind turbine using overlapping grids[J].Journal of Computational & Applied Mathematics, 2014, 270:78-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=565bf6891855d8cda68bf38518de2eb1
    [26] DI Y C, GAO G, XU J L, et al.Time-accurate simulation of the aircraft external store separation[J].Applied Mechanics and Materials, 2013, 444-445:854-859. doi: 10.4028/www.scientific.net/AMM.444-445.854
    [27] ZHAO Y, YU B, YU G.A new two-dimensional hybrid grid generation method based on improved hole cutting[J].International Communications in Heat and Mass Transfer, 2014, 54:103-114. doi: 10.1016/j.icheatmasstransfer.2014.03.015
    [28] 淮洋, 郝海兵, 姚冰, 等.一种改进型洞映射法[J].航空计算技术, 2015, 45(2):31-34. doi: 10.3969/j.issn.1671-654X.2015.02.008

    HUAI Y, HAO H B, YAO B, et al.An improved method of hole-map[J].Aeronautical Computing Technique, 2015, 45(2):31-34(in Chinese). doi: 10.3969/j.issn.1671-654X.2015.02.008
    [29] 袁武, 阎超, 席柯.洞映射方法的研究和改进[J].北京航空航天大学学报, 2012, 38(4):563-568. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjhkhtdxxb201204027

    YUAN W, YAN C, XI K.Investigation and enhancement of hole mapping method[J].Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(4):563-568(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjhkhtdxxb201204027
    [30] 王文, 阎超, 袁武, 等.鲁棒的结构网格自动化重叠方法[J].航空学报, 2016, 37(10):2980-2991. http://d.old.wanfangdata.com.cn/Periodical/hkxb201610009

    WANG W, YAN C, YUAN W, et al.A robust and automatic structured overlapping grid approach[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(10):2980-2991(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201610009
    [31] BONET J, PERAIRE J.An alternating digital tree(ADT) algorithm for 3D geometric searching and intersection problems[J].International Journal for Numerical Methods in Engineering, 1991, 31:1-17. doi: 10.1002/nme.1620310102
    [32] 董国国, 王立强.基于动态结构重叠网格的三维外挂物分离的数值模拟[J].航空兵器, 2011(2):21-25. doi: 10.3969/j.issn.1673-5048.2011.02.005

    DONG G G, WANG L Q.Three-dimensional store separation simulation using moving structured overlapping grid technique[J].Aero Weaponry, 2011(2):21-25(in Chinese). doi: 10.3969/j.issn.1673-5048.2011.02.005
    [33] 田书玲, 伍贻兆, 夏健.用动态非结构重叠网格法模拟三维多体相对运动绕流[J].航空学报, 2007, 28(1):46-51. doi: 10.3321/j.issn:1000-6893.2007.01.008

    TIAN S L, WU Y Z, XIA J.Simnlation of flows past multi-body in relative motion with dynamic unstructured overset grid method[J].Acta Aeronautica et Astronautica Sinica, 2007, 28(1):46-51(in Chinese). doi: 10.3321/j.issn:1000-6893.2007.01.008
    [34] CHIN V D, PETER D W, SPAID F W.Flow field measurements about a multi-element airfoil at high Reynolds numbers: AIAA-1993-3137[R].Reston, VA: AIAA, 1993.
    [35] BIEDRON S, JOHNSON C T, WANG L V.Simulations using a concurrent implicit Navier-Stokes solver: AIAA-1995-223[R].Reston, VA: AIAA, 1995.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  648
  • HTML全文浏览量:  17
  • PDF下载量:  351
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-17
  • 录用日期:  2019-04-05
  • 网络出版日期:  2019-10-20

目录

    /

    返回文章
    返回
    常见问答