北京航空航天大学学报 ›› 2019, Vol. 45 ›› Issue (8): 1519-1528.doi: 10.13700/j.bh.1001-5965.2019.0104

• 多相流测量 • 上一篇    下一篇

微型探头-传感系统高频响应特性模型适应性

丁红兵, 李一鸣, 李金霞, 王超   

  1. 天津大学 电气自动化与信息工程学院, 天津 300072
  • 收稿日期:2019-03-13 出版日期:2019-08-20 发布日期:2019-09-06
  • 通讯作者: 王超 E-mail:wangchao@tju.edu.cn
  • 作者简介:丁红兵 男,博士,副教授。主要研究方向:多相流测量、气体;王超 男,博士,教授。主要研究方向:电学层析成像、多相流测量和生物阻抗检测。
  • 基金资助:
    国家自然科学基金(51876143,61873184,61627803);天津市自然科学基金(16JCQNJC03700)

Adaptability of high-frequency response characteristic model for micro probe-transducer system

DING Hongbing, LI Yiming, LI Jinxia, WANG Chao   

  1. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • Received:2019-03-13 Online:2019-08-20 Published:2019-09-06
  • Supported by:
    National Natural Science Foundation of China (51876143,61873184,61627803); Natural Science Foundation of Tianjin (16JCQNJC03700)

摘要: 为了拓宽微型探头-传感系统的可用频带,满足高频压力信号的测量需求,需对系统的频率响应特性进行研究,并分析现有数学模型对不同结构微型探头-传感系统的适用性及预测精度。对5种典型结构的微型探头-传感系统进行了判定和划分,综述了现有微型探头-传感系统的频响预测模型、假设条件及模型修正方法。为对理论数学模型进行定量评价,计算得到了不同结构微型探头-传感系统的谐振频率、截止频率和工作频带(幅值误差±5%),并与数值仿真和实验结果进行了对比。结果表明:对于引压管较短的谐振腔,利用Panton模型计算其谐振频率,误差可控制在1%以内;对于引压管较长及带有测压孔的结构,B-T模型的预测精度最高。对实验用微型探头-传感系统进行了优化设计,并用于超声速凝结自激振荡现象的研究。结果表明:优化的微型探头-传感系统频响特性可满足高频(约10 kHz)压力波动信号的动态测量需求。

关键词: 瞬态压力测量, 微型探头-传感系统, 计算流体力学(CFD), 系统参数辨识, 高频响应特性

Abstract: To broaden the available bandwidth of micro probe transducer system and improve the measurement accuracy of high-frequency pressure signal, it is important to study the frequency response characteristic and analyze the application scope and prediction accuracy of the mathematic models for different probe-transducer system structures. In this study, the probe-transducer system structure was divided into five typical types. Then, the frequency response prediction models, and assumed conditions and updating methods of the existing probe-transducer system were summarized. To evaluate the theoretical mathematic models' prediction accuracy quantitatively, the resonant frequency, cut-off frequency and working band (amplitude error ±5%) for probe-transducer system with different structures were extracted by mathematic models and compared with the CFD and experimental results. For the resonator whose probe is shorter, the Panton model can be used and the error can be controlled within 1%. For the structure whose probe is longer and the structure with pressure hole, the B-T model is the most accurate. Finally, the probe-transducer system was optimized to study the self-excited oscillation phenomenon in supersonic condensation. The results show that the frequency response characteristic of the optimized probe-transducer system can meet the requirement of dynamic measurement for the high-frequency (about 10 kHz) fluctuating pressure signal.

Key words: transient pressure measurement, micro probe-transducer system, computational fluid dynamics (CFD), system parameter identification, high-frequency response characteristic

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发