[1] FERRATY F.Recent advances in functional data analysis and related topics[M].Berlin:Springer,2011.
[2] CHEN S T,XIAO L,STAICU A M.A smoothing-based goodness-of-fit test of covariance for functional data[J].Biometrics,2018,75(2):562-571.
[3] CUEVAS A.A partial overview of the theory of statistics with functional data[J].Journal of Statistical Planning and Inference,2014,147:1-23.
[4] PARK J,AHN J.Clustering multivariate functional data with phase variation[J].Biometrics,2017,73(1):324-333.
[5] KATO K.Estimation in functional linear quantile regression[J].Annals of Statistics,2012,40(6):3108-3136.
[6] TIBSHIRANI R.Regression shrinkage and selection via the Lasso[J].Journal of the Royal Statistical Society.Series B(Statistical Methodology),1996,58(1):267-288.
[7] HALL P,HOROWITZ J L.Methodology and convergence rates for functional linear regression[J].Annals of Statistics,2007,35(1):70-91.
[8] HALL P,HOSSEINI-NASAB M.On properties of functional principal components analysis[J].Journal of the Royal Statistical Society.Series B(Statistical Methodology),2005,68(1):109-126.
[9] LIN X,LU T,YAN F,et al.Mean residual life regression with functional principal component analysis on longitudinal data for dynamic prediction[J].Biometrics,2018,74(4):1482-1491.
[10] HUANG L,ZHAO J,WANG H,et al.Robust shrinkage estimation and selection for functional multiple linear model through LAD loss[J].Computational Statistics & Data Analysis,2016,103:384-400.
[11] QIAN J,SU L.Shrinkage estimation of common breaks in panel data models via adaptive group fused Lasso[J].Journal of Econometrics,2016,191(1):86-109.
[12] VINCENT M,HANSEN N R.Sparse group lasso and high dimensional multinomial classification[J].Computational Statistics & Data Analysis,2014,71:771-786.
[13] LIU X,LIN Y,WANG Z.Group variable selection for relative error regression[J].Journal of Statistical Planning and Inference,2016,175:40-50.
[14] WANG H J,LI D,HE X.Estimation of high conditional quantiles for heavy-tailed distributions[J].Journal of the American Statistical Association,2012,107(500):1453-1464.
[15] BANG S,JHUN M.Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization[J].Computational Statistics & Data Analysis,2012,56(4):813-826.
[16] WANG T,ZHU L.Consistent tuning parameter selection in high dimensional sparse linear regression[J].Journal of Multivariate Analysis,2011,102(7):1141-1151.
[17] HIROSE K,TATEISHI S,KONISHI S.Tuning parameter selection in sparse regression modeling[J].Computational Statistics & Data Analysis,2013,59:28-40. |