北京航空航天大学学报 ›› 2020, Vol. 46 ›› Issue (1): 38-50.doi: 10.13700/j.bh.1001-5965.2019.0172

• 论文 • 上一篇    下一篇

面向InSAR的空气扰动影响机翼挠曲变形建模

朱庄生1,2,3, 张萌1,2,3   

  1. 1. 北京航空航天大学 仪器科学与光电工程学院, 北京 100083;
    2. 惯性技术重点实验室, 北京 100083;
    3. 新型惯性仪表与导航系统技术国防重点学科实验室, 北京 100083
  • 收稿日期:2019-04-22 发布日期:2020-01-21
  • 通讯作者: 朱庄生 E-mail:zszhu@buaa.edu.cn
  • 作者简介:朱庄生,男,博士,副研究员。主要研究方向:惯性导航/组合导航、静动态变形GNSS/光学/惯性精密测量技术;张萌,女,硕士研究生。主要研究方向:静动态机翼变形测量、惯性导航/组合导航。
  • 基金资助:
    国家自然科学基金(61873019,61573040,61421063,61661136007,61703021,61722103,61571030,61473020);航空科学基金(20170551004)

Air disturbance affecting wing deflection deformation modeling for InSAR

ZHU Zhuangsheng1,2,3, ZHANG Meng1,2,3   

  1. 1. School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100083, China;
    2. Science & Technology on Inertial Laboratory, Beijing 100083, China;
    3. Key Laboratory of Fundamental Science for National Defense-Novel Inertial Instrument & Navigation System Technology, Beijing 100083, China
  • Received:2019-04-22 Published:2020-01-21
  • Supported by:
    National Natural Science Foundation of China (61873019,61573040,61421063,61661136007,61703021,61722103,61571030,61473020); Aeronautical Science Foundation of China (20170551004)

摘要: 针对多节点InSAR机翼挠曲变形误差问题,提出了一种基于机理模型综合参数辨识的方法对空气扰动影响机翼挠曲变形分层建模。首先,将大气湍流作为InSAR成像工作段的主要空气扰动,并基于Dryden模型分析得出了载机工作高度和速度是影响大气湍流的主要因素,将大气湍流影响机翼挠曲变形建模转换为载机在不同工作状态(高度变化、速度变化)的机翼挠曲变形分层建模。其次,基于空气动力学理论及悬臂梁变形理论建立机翼挠曲变形机理模型,借助计算流体力学与计算结构力学仿真分析获取实验数据辨识模型参数。最后,通过仿真实验验证,所提方法与模态叠加原理计算横向位移精度均优于0.6 mm(相对误差0.3%),轴向位移精度均优于0.015 mm(相对误差0.2%)。对实验室搭建的分布式光纤光栅测量系统进行测试,利用模态叠加原理计算变形量来验证所提方法,横向位移精度优于0.3 mm(相对误差1%),轴向位移精度优于0.06 mm(相对误差3%)。

关键词: InSAR, 机翼挠曲变形, 大气湍流, 参数辨识, 回归分析, 模态叠加原理

Abstract: For the problem of multi-node InSAR wing deflection deformation error, a method based on mechanism modeling integrated parameter identification is proposed for the layered modeling of wing deflection deformation induced by air disturbance. First, this model takes atmospheric turbulence as the main air disturbance in the InSAR imaging working section, and based on Dryden model, it is analyzed that the working height and speed of the aircraft are the main factors affecting atmospheric turbulence. Therefore, the modeling of wing deformation affected by atmospheric turbulence is transformed to the layered modeling of wing deformation under different working conditions (height change, velocity change). Second, the wing deformation mechanism model is established based on the combination of the aerodynamic theory and the cantilever beam deformation theory. The parameters of the model are identified by the experimental data obtained from the simulation analysis of computational fluid dynamics and computational structural mechanics. Finally, the simulation experiments show that, calculated by both the proposed method and the mature modal superposition principle, the lateral displacement error is better than 0.6 mm (relative error 0.3%) and the axial displacement error is better than 0.015 mm (relative error 0.2%). In addition, based on the distributed fiber Bragg grating measurement system of wing structure built in the laboratory and the principle of modal superposition, the deformation is calculated to verify the proposed method, the lateral displacement error is better than 0.3 mm (relative error 1%) and the axial relative error is better than 0.06 mm (relative error 3%).

Key words: InSAR, wing deflection deformation, atmospheric turbulence, parameter identification, regression analysis, modal superposition principle

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发