留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

影响三瓣式高速浮环密封性能的敏感参数

李庆展 李双喜 郑娆 马文杰 庄宿国

李庆展, 李双喜, 郑娆, 等 . 影响三瓣式高速浮环密封性能的敏感参数[J]. 北京航空航天大学学报, 2020, 46(3): 571-578. doi: 10.13700/j.bh.1001-5965.2019.0248
引用本文: 李庆展, 李双喜, 郑娆, 等 . 影响三瓣式高速浮环密封性能的敏感参数[J]. 北京航空航天大学学报, 2020, 46(3): 571-578. doi: 10.13700/j.bh.1001-5965.2019.0248
LI Qingzhan, LI Shuangxi, ZHENG Rao, et al. Sensitive parameters affecting performance of three-petal high-speed floating-ring seal[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(3): 571-578. doi: 10.13700/j.bh.1001-5965.2019.0248(in Chinese)
Citation: LI Qingzhan, LI Shuangxi, ZHENG Rao, et al. Sensitive parameters affecting performance of three-petal high-speed floating-ring seal[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(3): 571-578. doi: 10.13700/j.bh.1001-5965.2019.0248(in Chinese)

影响三瓣式高速浮环密封性能的敏感参数

doi: 10.13700/j.bh.1001-5965.2019.0248
基金项目: 

国家重点研发计划 2018YFB2000800

详细信息
    作者简介:

    李庆展 男, 硕士研究生。主要研究方向:流体润滑与密封技术

    李双喜 男, 博士, 副教授。主要研究方向:流体润滑与密封技术

    通讯作者:

    李双喜. E-mail:buctlsx@126.com

  • 中图分类号: V219;TB42

Sensitive parameters affecting performance of three-petal high-speed floating-ring seal

Funds: 

National Key R & D Program of China 2018YFB2000800

More Information
  • 摘要:

    针对应用在液体火箭发动机上的三瓣式高速浮环密封(TFRS),揭示密封在复杂多变工况下的泄漏特性和磨损特性,得到影响密封特性的敏感参数,促进高速密封技术的发展。针对压力、转速和密封周向弹簧比压等关键敏感参数,数值模拟了密封的泄漏率变化规律,试验测量了密封环的泄漏率和磨损率。研究结果表明:泄漏率和磨损率都随压力增大而增大;转速对三瓣式高速浮环密封磨损率敏感,对密封泄漏率不敏感,随着转速的增加,磨损率增大较快,泄漏率减小较慢;随着密封周向弹簧比压的增大,前期密封周向弹簧比压对泄漏率敏感,此时泄漏率变化幅度较大,磨损率变化幅度较小,后期密封周向弹簧比压对磨损率敏感,此时磨损率变化幅度较大,泄漏率变化幅度较小,密封周向弹簧比压在适当范围内时,泄漏率和磨损率都较小。研究结果为液体火箭发动机三瓣式高速浮环密封的设计、实际应用和深入研究提供了基础。

     

  • 图 1  TFRS结构

    Figure 1.  TFRS structure

    图 2  TFRS石墨环实物图

    Figure 2.  Photo of TFRS graphite ring

    图 3  TFRS受力分析

    Figure 3.  Force analysis of TFRS

    图 4  理论分析模型

    Figure 4.  Theoretical analysis model

    图 5  流体域网格划分

    Figure 5.  Mesh generation in fluid domain

    图 6  不同压力下的黏-温曲线

    Figure 6.  Viscosity-temperature curves under different pressures

    图 7  计算流程图

    Figure 7.  Computational flowchart

    图 8  流体域压力分布云图

    Figure 8.  Pressure distribution contour in fluid domain

    图 9  环形沟槽流体域轴向压力分布云图

    Figure 9.  Contour of axial pressure distribution in ring groove fluid domain

    图 10  环形沟槽流体域轴向速度分布云图

    Figure 10.  Contour of axial velocity distribution in ring groove fluid domain

    图 11  TFRS试验装置结构

    Figure 11.  Experiment device structure of TFRS

    图 12  TFRS密封试验台

    Figure 12.  Seal experiment device of TFRS

    图 13  压力对密封泄漏率的影响

    Figure 13.  Effect of pressure on leakage rate of seals

    图 14  压力对密封磨损率的影响

    Figure 14.  Effect of pressure on wear rate of seals

    图 15  转速对密封泄漏率的影响

    Figure 15.  Effect of speed on leakage rate of seals

    图 16  转速对密封磨损率的影响

    Figure 16.  Effect of speed on wear rate of seals

    图 17  密封周向弹簧比压对密封泄漏率的影响

    Figure 17.  Effect of spring specfic pressure of seal on leakage rate of seals

    图 18  密封周向弹簧比压对密封磨损率的影响

    Figure 18.  Effect of spring specfic pressure of seal on wear rate of seals

    图 19  密封磨损情况

    Figure 19.  Wear of seals

    表  1  结构参数

    Table  1.   Structure parameters

    结构参数 数值
    周向弹簧槽径/mm 35
    瓣环内径/mm 23
    瓣环外径/mm 37
    瓣环宽度/mm 6
    单瓣角度/(°) 118
    分瓣数量 3
      注:内槽类型为正弦曲线环形沟槽;连接方式为榫形搭接。
    下载: 导出CSV

    表  2  操作参数

    Table  2.   Operation parameters

    操作参数 数值
    进口压力pi/MPa 0~0.4
    出口压力po/MPa 0
    介质温度/K 295
    密度/(kg·m-3) 1.197
    黏度/(Pa·s) 1.82×10-5
    转速n/(r·min-1) 0~27 000
      注:介质为空气。
    下载: 导出CSV
  • [1] OIKE M, NOSAKA M, KIKUCHI M, et al.Performance of a shaft seal system for the LE-7 rocket engine oxidizer turbopump[C]//International Symposium on Space Technology and Science.Kagoshima: Space Technology and Science, 1992: 143-154.
    [2] NOSAKA M, OIKE M.Shaft seals of turbopumps for rockets[J].Journal of Tribology, 1990, 35(4):411-421.
    [3] OIKE M, NOSAKA M, KIKUCHI M, et al.Performance of a segmented circumferential seal for a liquid oxygen turbopump[J].Journal of Tribology, 1992, 37(4):511-523.
    [4] OIKE M, NOSAKA M, WATANABE Y, et al.Experimental study on high-pressure gas seals for a liquid oxygen turbopump[J].ASLE Transactions, 1988, 31(1):91-97. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/10402008808981803
    [5] OIKE M, WATANABE Y, KIKUCTI M, et al.Sealing characteristics of a carbon segmented circumferential seal for a liquid oxygen turbopump[J].Technical Report of National Aerospace Laboratory, 1992, 1155:1-15. http://adsabs.harvard.edu/abs/1991STIN...9312364O
    [6] TRAN H, HASELBACHER P.High-performance lift augmentation dynamic seals for turbine bearing compartments[J].Sealing Technology, 2004, 2004(1):5-10. doi: 10.1016/S1350-4789(04)00187-4
    [7] DUAN W B, CHU F L, KIM C H, et al.A bulk-flow analysis of static and dynamic characteristics of floating ring seals[J].Tribology International, 2007, 40(3):470-478. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9e65712e25498fa5ee236f992bfcb113
    [8] BALAKH L Y, NIKIFOROV A N.The reduction of the vibration level in high-speed rotor systems by means of floating seal rings[J].Journal of Machinery Manufacture and Reliability, 2013, 42(4):276-280. doi: 10.3103/S105261881304002X
    [9] MEL'NIK V.Calculation of the characteristics of seals with floating rings[J].Chemical and Petroleum Engineering, 2013, 49(7-8):542-548. doi: 10.1007/s10556-013-9790-9
    [10] ARGHIR M, MARIOT A.Theoretical analysis of the static characteristics of the carbon segmented seal[J].Journal of Tribology, 2016, 139(6):42-56. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bb9bfa97b4838e4882a2db8800c9fc2a
    [11] 王飞, 刘向锋, 刘莹.浅槽环瓣型浮动环密封的性能分析[J].润滑与密封, 2005(6):74-76. doi: 10.3969/j.issn.0254-0150.2005.06.024

    WANG F, LIU X F, LIU Y.Performance analysis of the shallow slot split floating ring seal[J].Lubrication Engineering, 2005(6):74-76(in Chinese). doi: 10.3969/j.issn.0254-0150.2005.06.024
    [12] 王飞, 刘向锋, 刘莹.浅槽环瓣型浮动环密封的参数优化[J].润滑与密封, 2006(2):105-107. doi: 10.3969/j.issn.0254-0150.2006.02.033

    WANG F, LIU X F, LIU Y.Parameters optimization of the shallow-slot split floating ring seal[J].Lubrication Engineering, 2006(2):105-107(in Chinese). doi: 10.3969/j.issn.0254-0150.2006.02.033
    [13] 苏令.新型浅槽环瓣型浮动环密封综合性能分析及软件开发[D].北京: 清华大学, 2006.

    SU L.Performance analysis and software development of a new shallow-slot split floating ring seal[D].Beijing: Tsinghua University, 2006(in Chinese).
    [14] 苏令, 刘向锋, 刘莹.浅槽环瓣型浮动环密封的动态特性分析[J].润滑与密封, 2007, 32(1):105-107. doi: 10.3969/j.issn.0254-0150.2007.01.032

    SU L, LIU X F, LIU Y.Dynamic characteristic analysis of the shallow slot-split floating ring seal[J].Lubrication Engineering, 2007, 32(1):105-107(in Chinese). doi: 10.3969/j.issn.0254-0150.2007.01.032
    [15] 丁少鹏, 白少先.气体润滑环瓣式浮动环密封高速特性[J].润滑与密封, 2016, 41(7):43-47. doi: 10.3969/j.issn.0254-0150.2016.07.007

    DING S P, BAI S X.Behavior of a gas lubricated split floating ring seal operating at high speed[J].Lubrication Engineering, 2016, 41(7):43-47(in Chinese). doi: 10.3969/j.issn.0254-0150.2016.07.007
    [16] 夏鹏, 刘占生.浮环密封结构弹性对间隙泄漏量和动力学系数的影响[J].推进技术, 2017, 38(12):2815-2821. http://d.old.wanfangdata.com.cn/Periodical/tjjs201712021

    XIA P, LIU Z S.Effects of structure elasticity on leakage and rotor dynamic coefficients of floating ring seals[J].Journal of Propulsion Technology, 2017, 38(12):2815-2821(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/tjjs201712021
    [17] 夏鹏, 王祥和, 刘占生, 等.CFD优化火箭涡轮泵间隙密封静动态特性计算模型[J].推进技术, 2017, 38(7):1603-1609. http://d.old.wanfangdata.com.cn/Periodical/tjjs201707021

    XIA P, WANG X H, LIU Z S, et al.CFD optimized calculation of static and dynamic characteristics for annular seals in rocket turbo pumps[J].Propulsion Technology, 2017, 38(7):1603-1609(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/tjjs201707021
    [18] 刘占生, 夏鹏, 张广辉, 等.浮环密封运动机理及对轴系稳定性的影响[J].振动与冲击, 2016, 35(9):110-116. http://d.old.wanfangdata.com.cn/Periodical/zdycj201609017

    LIU Z S, XIA P, ZHANG G H, et al.Floating ring seals movement mechanism and its influence on stability of a rotor system[J].Journal of Vibration and Shock, 2016, 35(9):110-116(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zdycj201609017
    [19] 沈文金, 叶小强.深度变推发动机浮动环工作适应性研究[J].火箭推进, 2017, 43(5):28-33. doi: 10.3969/j.issn.1672-9374.2017.05.005

    SHEN W J, YE X Q.Investigation for working adaptability of floating ring seals in deep throttling engines[J].Journal of Rocket Propulsion, 2017, 43(5):28-33(in Chinese). doi: 10.3969/j.issn.1672-9374.2017.05.005
    [20] 马利军, 李双喜, 蔡纪宁, 等.高温镶装式浮环密封的径向间隙研究[J].润滑与密封, 2018, 43(6):90-95. doi: 10.3969/j.issn.0254-0150.2018.06.017

    MA L J, LI S X, CAI J N, et al.Research on radial clearance of high temperature mounted floating ring seal[J].Lubrication Engineering, 2018, 43(6):90-95(in Chinese). doi: 10.3969/j.issn.0254-0150.2018.06.017
    [21] 邓强国, 宋鹏云, 毛文元, 等.气体黏度与温度和压力关系的拟合表达式[J].排灌机械工程学报, 2017, 35(2):144-151. http://d.old.wanfangdata.com.cn/Periodical/pgjx201702010

    DENG Q G, SONG P Y, MAO W Y, et al.Fitting expression of relationship between gas viscosity and temperature and/or pressure[J].Journal of Drainage and Irrigation Machinery Engineering, 2017, 35(2):144-151(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/pgjx201702010
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  593
  • HTML全文浏览量:  83
  • PDF下载量:  170
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-22
  • 录用日期:  2019-10-11
  • 网络出版日期:  2020-03-20

目录

    /

    返回文章
    返回
    常见问答