北京航空航天大学学报 ›› 2020, Vol. 46 ›› Issue (4): 703-711.doi: 10.13700/j.bh.1001-5965.2019.0298

• 论文 • 上一篇    下一篇

基于改进遗传算法的移动机器人路径规划

魏彤, 龙琛   

  1. 北京航空航天大学 仪器科学与光电工程学院, 北京 100083
  • 收稿日期:2019-06-17 发布日期:2020-04-21
  • 通讯作者: 魏彤 E-mail:weitong@buaa.edu.cn
  • 作者简介:魏彤,男,博士,副教授。主要研究方向:计算机视觉、自动控制等;龙琛,男,硕士研究生。主要研究方向:路径规划与控制。
  • 基金资助:
    北京市科技计划项目(Z151100002115022)

Path planning for mobile robot based on improved genetic algorithm

WEI Tong, LONG Chen   

  1. School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100083, China
  • Received:2019-06-17 Published:2020-04-21
  • Supported by:
    Beijing Science and Technology Plan Project (Z151100002115022)

摘要: 路径规划是实现移动机器人自主导航的关键技术。针对常规路径规划算法求解的路径长度非最短以及在前后两次规划过程中规划路径不连贯的问题,提出一种基于改进遗传算法的帧间关联平稳路径规划方法。首先,结合随机和定向两种搜索方式生成候选路径;然后,在常规遗传操作算子中引入插入算子和删除算子,并将规划路径的连贯性考虑进适应度函数中来计算每条候选路径的适应度值;最后,输出适应度值最高的路径作为当前最优路径。仿真结果表明了所提方法的正确性和可行性。实验结果表明,所提方法与A*算法和常规遗传算法相比,移动机器人行驶路径长度分别减少了3.05%和1.85%;行驶过程中的最大偏航角变化量分别减少了38.02%和32.43%,转角绝对值之和分别减少了23.97%和19.94%,所提方法能规划出更优的路径,并显著提高移动机器人的行驶效率和平稳性。

关键词: 路径规划, 遗传算法, 移动机器人, 帧间关联, 避障

Abstract: Path planning is the key technology to realize autonomous navigation of mobile robots. For the problem that the path length is not the shortest and the path is not coherent in the two plan cycles with conventional path planning method, a new method for inter-frame correlation smooth path planning based on improved genetic algorithm is proposed. Firstly, the candidate paths were generated by combining random and directional search methods. Then, the insertion operator and deletion operator were added to conventional genetic operators, and the path coherence of two plan cycles was considered in the fitness function to calculate the fitness value of each candidate path. Finally, the path with the highest fitness value was output as the current optimal path. Simulation results show that the proposed method is correct and feasible. Experimental results show that, compared with A* algorithm and conventional genetic algorithm, the path length of mobile robot is reduced by 3.05% and 1.85%, the variation of maximum yaw angle is reduced by 38.02% and 32.43%, and the sum of absolute value of turning angle is reduced by 23.97% and 19.94% respectively during the movement of mobile robot. It shows that the resulting path of this method is more optimal, which observably improves the moving efficiency and stationarity of the mobile robot.

Key words: path planning, genetic algorithm, mobile robot, inter-frame correlation, obstacle avoidance

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发