[1] GROUP C A T W,ARVIDSON R E,BOYCE J,et al.Standard techniques for presentation and analysis of crater size-frequency data[J].Icarus,1979,37(2):467-474. [2] PALAFOX L F,HAMILTON C W,SCHEIDT S P,et al.Automated detection of geological landforms on Mars using convolutional neural networks[J].Computers & Geosciences,2017,101:48-56. [3] CHENG Y,JOHNSON A E,MATTHIES L H,et al.Optical landmark detection for spacecraft navigation[C]//Proceedings of the 13th Annual AAS/AIAA Space Flight Mechanics Meeting,2003: 1785-1803. [4] SAWABE Y,MATSUNAGA T,ROKUGAWA S.Automated detection and classification of lunar craters using multiple approaches[J].Advances in Space Research,2006,37(1):21-27. [5] KIM J R,MULLER J,VAN GASSELT S,et al.Automated crater detection,a new tool for Mars cartography and chronology[J].Photogrammetric Engineering & Remote Sensing,2005,71(10):1205-1217. [6] 冯军华, 崔祜涛,崔平远,等.行星表面陨石坑检测与匹配方法[J].航空学报,2010,31(9):1858-1863.FENG J H,CUI H T,CUI P Y,et al.Autonomous crater detection and matching on planetary surface[J].Acta Aeronautica et Astronautica Sinica,2010,31(9):1858-1863(in Chinese). [7] DING M,CAO Y F,WU Q X.Method of passive image based crater autonomous detection[J].Chinese Journal of Aeronautics,2009,22(3):301-306. [8] CRACKNELL M J,READING A M.Geological mapping using remote sensing data: A comparison of five machine learning algorithms,their response to variations in the spatial distribution of training data and the use of explicit spatial information[J].Computers & Geosciences,2014,63:22-33. [9] CHRISTOFF N,MANOLOVA A,JORDA L,et al.Morphological crater classification via convolutional neural network with application on MOLA data[C]//Advances in Neural Networks and Applications 2018,2018:1-5. [10] BARATA T,ALVES E I,SARAIVA J,et al.Automatic recognition of impact craters on the surface of Mars[C]//International Conference Image Analysis and Recognition.Berlin:Springer,2004:489-496. [11] BOUKERCHA A,AL-TAMEEMI A,GRUMPE A,et al.Automatic crater recognition using machine learning with different features and their combination[C]//Lunar and Planetary Science Conference,2014,45:2842. [12] SILBURT A,ALI-DIB M,ZHU C,et al.Lunar crater identification via deep learning[J].Icarus,2019,317:27-38. [13] WRIGHT E.SVS: Moon phase and libration,2018[EB/OL].(2019-01-28)[2019-06-12].https://svs.gsfc.nasa.gov/4604. [14] HEAD J W,ADAMS J B,MCCORD T B,et al.Regional stratigraphy and geologic history of Mare Crisium[C]//Mare Crisium:The View From Luna 24,1978:43-74. [15] WATTERS T R,KONOPLIV A S.The topography and gravity of Mare Serenitatis:Implications for subsidence of the mare surface[J].Planetary and Space Science,2001,49(7):743-748. [16] SOLOMON S C,HEAD J W.Vertical movement in mare basins:Relation to mare emplacement,basin tectonics,and lunar thermal history[J].Journal of Geophysical Research: Solid Earth,1979,84(B4):1667-1682. [17] SCHULTZ P H,STAID M I,PIETERS C M.Lunar activity from recent gas release[J].Nature,2006,444(7116):184-186. [18] KRVGER T,VAN DER BOGERT C H,HIESINGER H.Geomorphologic mapping of the lunar crater Tycho and its impact melt deposits[J].Icarus,2016,273:164-181. [19] ZHANG K,ZUO W,CHEN Y,et al.Beyond a Gaussian denoiser:Residual learning of deep CNN for image denoising[J].IEEE Transactions on Image Processing,2017,26(7):3142-3155. [20] DONG C,LOY C C,HE K,et al.Image super-resolution using deep convolutional networks[J].IEEE transactions on Pattern Analysis and Machine Intelligence,2015,38(2):295-307. [21] LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE Press,2015:3431-3440. [22] MALTEZOS E,DOULAMIS N,DOULAMIS A,et al.Deep convolutional neural networks for building extraction from orthoimages and dense image matching point clouds[J].Journal of Applied Remote Sensing,2017,11(4):42620. [23] ZHANG N, DONAHUE J,GIRSHICK R,et al.Part-based R-CNNs for fine-grained category detection[C]//European Conference on Computer Vision.Berlin:Springer,2014:834-849. [24] 黄洁,姜志国,张浩鹏,等.基于卷积神经网络的遥感图像舰船目标检测[J]北京航空航天大学学报,2017,43(9):1841-1848.HUAGN J,JIANG Z G,ZHANG H P,et al.Ship object detection in remote sensing images using convolutional neural networks[J].Journal of Beijing University of Aeronautics and Astronautics,2017,43(9):1841-1848(in Chinese). [25] JIAO L,LIANG M,CHEN H,et al.Deep fully convolutional network-based spatial distribution prediction for hyperspectral image classification[J].IEEE Transactions on Geoscience and Remote Sensing,2017,55(10):5585-5599. [26] 韩京冶,许福,陈志泊,等.一种基于深度学习的交互式电话号码识别方法[J].北京航空航天大学学报,2018,44(5):1074-1080.HAN J Y,XU F,CHEN Z B,et al.A deep learning based interactive recognition method for telephone numbers[J].Journal of Beijing University of Aeronautics and Astronautics,2018,44(5):1074-1080(in Chinese). [27] KRIZHEVSKY A, SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems,2012: 1097-1105. [28] RIEDMILLER M,BRAUN H.A direct adaptive method for faster backpropagation learning: The RPROP algorithm[C]//Proceedings of the IEEE International Conference on Neural Networks.Piscataway:IEEE Press,1993:586-591. [29] ZEILER M D,FERGUS R.Visualizing and understanding convolutional networks[C]//European Conference on Computer Vision.Berlin:Springer,2014:818-833. [30] ZEILER M D.ADADELTA:An adaptive learning rate method[EB/OL].(2012-12-22)[2019-06-20].https://arxiv.org/abs/1212.5701. [31] KINGMA D P,BA J.Adam:A method for stochastic optimization[EB/OL].(2014-12-22)[2019-06-20].https://arxiv.org/abs/1412.6980. [32] TIELEMAN T, HINTON G.RMSPROP:Divide the gradient by a running average of its recent magnitude[J].Neural Networks for Machine Learning,2012,4:26-30. |