[1] LAROCHELLE H,ERHAN D,BENGIO Y.Zero-data learning of new tasks[C]//Proceedings of the Association for the Advancement of Artificial Intelligence. Palo Alto:AAAI Press,2008:646-651.
[2] CHANGPINYO S,CHAO W,GONG B,et al.Synthesized classifiers for zero-shot learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2016:5327-5336.
[3] KODIROV E,XIANG T,GONG S.Semantic auto-encoder for zero-shot learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2017:4447-4456.
[4] XIAN Y,SCHIELE B,AKATA Z.Zero-shot learning-the good,the bad and the ugly[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2017:3077-3086.
[5] DING Z,SHAO M,FU Y.Low-rank embedded ensemble semantic dictionary for zero-shot learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2017:6005-6013.
[6] LAMPERT C H,NICKISCH H,HARMELING S.Attribute-based classification for zero-shot visual object categorization[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,36(3):453-465.
[7] ROMERA-PAREDES B,TORR P.An embarrassingly simple approach to zero-shot learning[C]//Proceedings of the International Conference on Machine Learning.Madison:Omnipress,2015:2152-2161.
[8] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[C]//Proceedings of the Neural Information Processing Systems.Cambridge:MIT Press,2014:2672-2680.
[9] XIAN Y,LORENZ T,SCHIELE B,et al.Feature generating networks for zero-shot learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2018:5542-5551.
[10] ZHU Y,ELHOSEINY M,LIU B,et al.A generative adversarial approach for zero-shot learning from noisy texts[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2018:1004-1013.
[11] ARJOVSKY M,CHINTALA S,BOTTOU L.Wasserstein generative adversarial networks[C]//Proceedings of the International Conference on Machine Learning.Madison:Omnipress,2017:214-223.
[12] MIRZA M,OSINDERO S.Conditional generative adversarial nets[EB/OL].(2014-11-06)[2019-07-01].https://arxiv.org/abs/1411.1784.
[13] LAMPERT C H,NICKISCH H,HARMELING S.Learning to detect unseen object classes by between-class attribute transfer[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2009:951-958.
[14] WAH C,BRANSON S,WELINDER P,et al.The Caltech-UCSD Birds-200-2011 dataset:CNS-TR-2011-001[R].Pasadena:California Institute of Technology,2011.
[15] PATTERSON G,HAYS J.SUN attribute database:Discovering,annotating,and recognizing scene attributes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2012:2751-2758.
[16] NOROUZI M,MIKOLOV T,BENGIO S.Zero-shot learning by convex combination of semantic embeddings[C]//Proceedings of the International Conference on Learning Representations.Brookline:Microtome Publishing,2014:10-19.
[17] ZHANG Z,SALIGRAMA V.Zero-shot learning via semantic similarity embedding[C]//Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2015:4166-4174.
[18] FROME A,CORRADO G S,SHLENS J,et al.DeViSE:A deep visual semantic embedding model[C]//Proceedings of the Neural Information Processing Systems.Cambridge:MIT Press,2013:2121-2129.
[19] AKATA Z,REED S,WALTER D,et al.Evaluation of output embeddings for fine-grained image classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE Press,2015:2927-2936.
[20] AKATA Z,PERRONNIN F,HARCHAOUI Z,et al.Label-embedding for image classification[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(7):1425-1438. |