[1] 朱战霞,史格非,樊瑞山.航天器相对运动姿轨耦合动力学建模方法[J].飞行力学,2018,36(1):1-6.ZHU Z X,SHI G F,FAN R S.Dynamic modeling methods of attitude and orbital coupling for spacecraft relative motion[J].Flight Dynamics,2018,36(1):1-6(in Chinese). [2] 武元新. 对偶四元数导航算法与非线性高斯滤波研究[D].长沙:国防科学技术大学,2005.WU Y X.Research on dual-quaternion navigation algorithm and nonlinear Gaussian filtering[D].Changsha:National University of Defense Technology,2005(in Chinese). [3] 张洪珠. 基于对偶四元数的航天器姿轨一体化动力学建模与控制[D].哈尔滨:哈尔滨工业大学,2010.ZHANG H Z.Integrated dynamics modeling and control for space- craft based on dual quaternion[D].Harbin:Harbin Institute of Technology,2010(in Chinese). [4] 党庆庆,桂海潮,徐明,等.无速度反馈的航天器姿轨耦合跟踪控制[J].航空学报,2018,39(S1):722202.DANG Q Q,GUI H C,XU M,et al.Attitude and position tracking control for spacecraft without velocity measurement[J].Acta Aeronautica et Astronautica Sinica,2018,39(S1):722202(in Chinese). [5] GUI H C,VUKOVICH G.Dual-quaternion-based adaptive motion tracking of spacecraft with reduced control effort[J].Nonlinear Dynamics,2016,83(1-2):579-614. [6] ZOU A M,KUMAR K D,HOU Z G.Finite-time attitude tracking control for spacecraft using terminal sliding mode and Chebyshev neural network[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2011,41(4):950-963. [7] ZOU A M,KUMAR K D,HOU Z G.Corrections to "finite-time attitude tracking control for spacecraft using terminal sliding model and Chebyshev neural network"[J].IEEE Transactions on Systems, Man, and Cybernetics,Part B:Cybernetics,2013, 43(2):803. [8] 王剑颖.航天器姿轨一体化动力学建模、控制与导航方法研究[D]. 哈尔滨:哈尔滨工业大学,2013.WANG J Y.Research on spacecraft integrated orbit and attitude dynamics, control and navigation[D].Harbin:Harbin Institute of Technology,2013(in Chinese). [9] DONG H Y,HU Q L,AKELLA M R.Dual-quaternion-based spacecraft autonomous rendezvous and docking under six-degree-of-freedom motion constraints[J].Journal of Guidance,Control,and Dynamics,2018,41(5):1150-1162. [10] DONG H,HU Q,MA G.Dual-quaternion based fault-tolerant control for spacecraft formation flying with finite-time convergence[J].ISA Transactions,2016:61:87-94. [11] 朱庆华,董瑞琦,马广富.基于动态滑模控制的挠性航天器姿态控制[J].控制理论与应用, 2018,35(10):1430-1435.ZHU Q H,DONG R Q,MA G F.Dynamical sliding mode for flexible spacecraft attitude control[J].Control Theory & Applications,2018,35(10):1430-1435(in Chinese). [12] TIWARI P M,JANARDHANAN S,NABI M.Attitude control using higher order sliding mode[J].Aerospace Science and Technology,2016,54:108-113. [13] BRODSKY V,SHOHAM M.Dual numbers representation of rigid body dynamics[J].Mechanism and Machine Theory,1999,34(5):693-718. [14] WANG J,LIANG H,SUN Z,et al.Finite-time control for spacecraft formation with dual-number-based description[J].Journal of Guidance, Control, and Dynamics,2012,35(3):950-962. [15] AHEMD J,COPPOLA T V,BERNSTEIN S D.Adaptive asymptotic tracking of spacecraft attitude motion with inertia matrix identification[J].Journal of Guidance,Control,and Dynamics,1998,21(5):684-691. [16] DANG Q Q,GUI H C,WEN H.Dual-duaternion-based spacecraft pose tracking with a global exponential velocity observer[J].Journal of Guidance,Control,and Dynamics,2019,42(9):2106-2115. [17] LEE D,VUKOVICH G.Robust adaptive terminal sliding mode control on SE(3)for autonomous spacecraft rendezvous and docking[J].Nonlinear Dynamics,2016,83:2263-2279. |