北京航空航天大学学报 ›› 2020, Vol. 46 ›› Issue (8): 1494-1502.doi: 10.13700/j.bh.1001-5965.2019.0518

• 论文 • 上一篇    下一篇

应用于智能芯片的可视化反馈系统研究

李欣致1, 董胜波1, 崔向阳2, 刘志哲1, 郭广浩1   

  1. 1. 北京遥感设备研究所, 北京 100854;
    2. 航天科工网络信息发展有限公司, 北京 100048
  • 收稿日期:2019-09-24 发布日期:2020-08-27
  • 通讯作者: 董胜波 E-mail:shbdong@aliyun.com
  • 作者简介:李欣致 女,博士研究生,工程师。主要研究方向:控制科学与工程。
    董胜波 男,博士,研究员,博士生导师。主要研究方向:控制科学与工程。
    崔向阳 男,硕士,工程师。主要研究方向:智能信息处理。
    刘志哲 男,博士,研究员。主要研究方向:SoC芯片和智能处理器。
    郭广浩 男,博士研究生,工程师。主要研究方向:智能芯片处理。

Visual feedback system applied to AI chips

LI Xinzhi1, DONG Shengbo1, CUI Xiangyang2, LIU Zhizhe1, GUO Guanghao1   

  1. 1. Beijing Institute of Remote Sensing Equipment, Beijing 100854, China;
    2. Aerospace Science and Industry Network Information Development Co., Ltd., Beijing 100048, China
  • Received:2019-09-24 Published:2020-08-27

摘要: 当前,市场上普遍使用的负责推理的终端人工智能(AI)芯片使用训练好的参数对数据进行快速高效运算。但在通常训练过程中使用的数据集和真实数据的分布不一致,由此获得的参数会导致终端AI芯片识别准确度降低。为此,提出了一种基于终端AI芯片的可视化反馈系统架构方法。使用反卷积特征可视化方法,在具有高效计算性能的终端AI芯片上,对卷积核参数进行迭代优化,达到可识别该图像目的。相比于CPU/GPU和FPGA,所提架构在卷积神经网络模型里,更具有高效处理能力和灵活可塑性。实验表明,该研究有效提高了终端AI芯片的普适性、识别准确度和处理效率。

关键词: 深度学习, 终端人工智能(AI)芯片, 卷积层可视化, 卷积核参数优化, 小样本

Abstract: Currently, terminal Artificial Intelligence (AI) chips responsible for inference are commonly used in the market, which use trained parameters to perform fast and efficient calculations on data. However, the training dataset usually has different distribution with the real-world data, and the parameters obtained in this case lead to a decrease in the accuracy of the terminal chip recognition. To this end, this paper proposes a visual feedback system architecture method based on terminal AI chip. Using the deconvolution feature visualization method, the convolution kernel parameters are iteratively optimized on the terminal AI chip with high computational performance to achieve the purpose of recognizing the image. Compared with CPU/GPU and FPGA, the architecture proposed in this paper has more efficient processing capability and flexible plasticity in the convolutional neural network model. Experiments show that the research effectively improves the universality, recognition accuracy and handling efficiency of the terminal chip.

Key words: deep learning, terminal Artificial Intelligence (AI) chip, convolution layer visualization, convolution kernel parameter optimization, small sample

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发