北京航空航天大学学报 ›› 2020, Vol. 46 ›› Issue (8): 1460-1468.doi: 10.13700/j.bh.1001-5965.2019.0526

• 论文 • 上一篇    下一篇

基于修正IMM的风机变桨系统故障诊断方法

王进花1,2,3, 朱恩昌1,2, 曹洁1,2, 余萍1,2,3   

  1. 1. 兰州理工大学 电气工程与信息工程学院, 兰州 730050;
    2. 甘肃省工业过程先进控制重点实验室, 兰州 730050;
    3. 兰州理工大学 电气与控制工程国家级实验教学示范中心, 兰州 730050
  • 收稿日期:2019-09-26 发布日期:2020-08-27
  • 通讯作者: 王进花 E-mail:wjh0615@lut.edu.cn
  • 作者简介:王进花 女,博士,副教授。主要研究方向:故障诊断、非线性滤波方法及应用。
    朱恩昌 男,硕士研究生。主要研究方向:故障诊断、智能信息处理。
  • 基金资助:
    国家自然科学基金(61763028);甘肃省自然科学基金(1506RJZA105)

Fault diagnosis method for wind turbine pitch system based on modified IMM

WANG Jinhua1,2,3, ZHU Enchang1,2, CAO Jie1,2, YU Ping1,2,3   

  1. 1. College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China;
    2. Gansu Provincial Key Laboratory of Industrial Process Control, Lanzhou 730050, China;
    3. National Experimental Teaching Demonstration Center of Electrical and Control Engineering, Lanzhou University of Technology, Lanzhou 730050, China
  • Received:2019-09-26 Published:2020-08-27
  • Supported by:
    National Natural Science Foundation of China (61763028); Natural Science Foundation of Gansu Province,China (1506RJZA105)

摘要: 针对交互式多模型(IMM)故障诊断方法固定模型转移概率导致的诊断准确性、速度下降和估计精度损失问题,提出了一种基于模型转移概率和模型概率修正的故障诊断方法,并与粒子滤波(PF)结合实现了风机变桨系统传感器的多故障诊断。在非模式切换阶段,采用后验模型概率梯度信息设计模型转移概率的修正函数,以抑制噪声对IMM估计精度的影响;在模式切换阶段,采用模型概率反转的策略快速切换模型,弥补模型软切换导致的诊断延迟和错误诊断。通过仿真实验证明所提方法的准确性、模型切换速度以及状态估计精度都得到了较好的提升。

关键词: 风电机组, 变桨距系统, 故障诊断, 交互式多模型(IMM), 粒子滤波(PF), 模型转移概率

Abstract: Aimed at the diagnostic accuracy reduction, speed drop and estimation accuracy loss caused by the fixed model transition probability of Interactive Multi-Model (IMM) fault diagnosis method, this paper proposes a fault diagnosis method based on model transition probability and model probability modification, which is combined with the Particle Filter (PF) to achieve multi-fault diagnosis of wind turbine pitch sensor. In the non-mode-switching phase, the posterior model probability gradient information is used to design the modification function of the model transition probability to suppress the influence of noise on the accuracy of IMM estimation. In the mode-switching phase, the model probability inversion strategy is used to quickly switch models to compensate for diagnostic delay and error diagnosis caused by model soft handoff. The simulation results show that the fault diagnosis accuracy, model switching speed and state estimation accuracy of the proposed method are improved.

Key words: wind turbine, pitch system, fault diagnosis, Interactive Multi-Model (IMM), Particle Filter(PF), model transition probability

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发