[1] MARINISSEN E J,PRINCE B,KEITEL-SCHULZ D,et al.Challenges in embedded memory design and test[C]//Proceedings of Design,Automation and Test in Europe.Piscataway:IEEE Press,2005:722-727. [2] ZHANG K.Embedded memories for nano-scale VLSIs[M].Berlin:Springer,2009:91-93. [3] BHASKAR A.Design and analysis of low power SRAM cells[C]//2017 Innovations in Power and Advanced Computing Technologies.Piscataway:IEEE Press,2018:1-5. [4] TAKASHIMA D,ENDO M,SHIMAZAKI K,et al.A 7T-SRAM with data-write technique by capacitive coupling[J].IEEE Journal of Solid-State Circuits,2019,54(2):596-605. [5] GROVER A,VISWESWARAN G S,PARTHASARATHY C R,et al.A 32 kb 0.35-1.2 V,50 MHz-2.5 GHz bit-interleaved SRAM with 8T SRAM cell and data dependent write assist in 28 nm UTBB-FDSOI CMOS[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2017,64(9):2438-2447. [6] SAXENA S,MEHRA R.Low-power and high-speed 13T SRAM cell using FinFETs[J].IET Circuits Devices & Systems,2017,11(3):250-255. [7] DUAN C,GOTTERBA A J,SINANGIL M E,et al.Energy-efficient reconfigurable SRAM:Reducing read power through data statistics[J].IEEE Journal of Solid-State Circuits,2017,52(10):1-9. [8] PAVLOV A.CMOS SRAM circuit design and parametric test in nano-scaled technologies[M].Berlin:Springer,2008:2703-2711. [9] NHO H,KOLAR P,HAMZAOGLU F,et al.A 32 nm high-k metal gate SRAM with adaptive dynamic stability enhancement for low-voltage operation[C]//IEEE International Solid-State Circuits Conference.Piscataway:IEEE Press,2010:76-84. [10] SONG T,RIM W,PARK S,et al.A 10 nm FinFET 128 Mb SRAM with assist adjustment system for power,performance,and area optimization[J].IEEE Journal of Solid-State Circuits,2017,52(1):240-249. [11] LIEN N C,CHU L W,CHEN C H,et al.A 40 nm 512 kb cross-point 8T pipeline SRAM with binary word-line boosting control,ripple bit-line and adaptive data-aware write-assist[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2017,61(12):3416-3425. [12] CHEN Y H,CHAN W M,WU W C,et al.A 16 nm 128 Mb SRAM in high-k metal-gate FinFET technology with write-assist circuitry for low-VMIN applications[J].IEEE Journal of Solid-State Circuits,2015,50(1):170-177. [13] SINANGIL M E,POULTON J W,FOJTIK M R,et al.A 28 nm 2 Mbit 6T SRAM with highly configurable low-voltage write-ability assist implementation and capacitor-based sense-amplifier input offset compensation[J].IEEE Journal of Solid-State Circuits,2015,50(2):557-567. [14] CHANG M F,CHEN C F,CHANG T H,et al.A compact-area low-VDDmin 6T SRAM with improvement in cell stability,read speed,and write margin using a dual-split-control-assist scheme[J].IEEE Journal of Solid-State Circuits,2017,52(9):2498-2514. [15] SINANGIL M E,MAIR H,CHANDRAKASAN A P.A 28 nm high-density 6T SRAM with optimized peripheral-assist circuits for operation down to 0.6V[C]//IEEE International Solid-State Circuits Conference.Piscataway:IEEE Press,2011:260-261. |