留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于XFEM-CZM耦合法的胶接接头裂纹扩展分析及强度预测

周伟 张超 甘淑媛

周伟, 张超, 甘淑媛等 . 基于XFEM-CZM耦合法的胶接接头裂纹扩展分析及强度预测[J]. 北京航空航天大学学报, 2020, 46(11): 2121-2130. doi: 10.13700/j.bh.1001-5965.2019.0579
引用本文: 周伟, 张超, 甘淑媛等 . 基于XFEM-CZM耦合法的胶接接头裂纹扩展分析及强度预测[J]. 北京航空航天大学学报, 2020, 46(11): 2121-2130. doi: 10.13700/j.bh.1001-5965.2019.0579
ZHOU Wei, ZHANG Chao, GAN Shuyuanet al. Crack propagation analysis and strength prediction of bonded joints based on XFEM-CZM coupling method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2121-2130. doi: 10.13700/j.bh.1001-5965.2019.0579(in Chinese)
Citation: ZHOU Wei, ZHANG Chao, GAN Shuyuanet al. Crack propagation analysis and strength prediction of bonded joints based on XFEM-CZM coupling method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2121-2130. doi: 10.13700/j.bh.1001-5965.2019.0579(in Chinese)

基于XFEM-CZM耦合法的胶接接头裂纹扩展分析及强度预测

doi: 10.13700/j.bh.1001-5965.2019.0579
基金项目: 

江苏省自然科学基金 BK20180855

中国博士后科学基金 2018M640459

机械结构力学及控制国家重点实验室开放课题(南京航空航天大学) MCMS-E-0219Y01

详细信息
    作者简介:

    周伟  男, 硕士研究生。主要研究方向:复合材料损伤与断裂

    张超  , 男, 博士, 副教授, 硕士生导师。主要研究方向:复合材料结构力学

    通讯作者:

    张超, E-mail: zhangchao@ujs.edu.cn

  • 中图分类号: V258.3;TB332

Crack propagation analysis and strength prediction of bonded joints based on XFEM-CZM coupling method

Funds: 

Natural Science Foundation of Jiangsu Province BK20180855

China Postdoctoral Science Foundation 2018M640459

Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (Nanjing University of Aeronautics and Astronautics) MCMS-E-0219Y01

More Information
  • 摘要:

    采用扩展有限元法(XFEM)和内聚力模型(CZM)相耦合的方法,分析胶接接头胶层内部裂纹扩展、界面脱粘分层现象。采用内聚力单元和内聚力接触描述胶层/板材界面,建立单/双搭接接头有限元模型。预测拉伸载荷下接头的强度性能并与已有试验数据对比分析,验证XFEM-CZM耦合法的可行性及内聚力单元和内聚力接触2种界面建模方法的有效性。模拟裂纹从胶层内部扩展至胶层/板材界面并引起界面脱粘分层的过程,分析其损伤失效机理。讨论初始裂纹长度和界面刚度、强度及应变能释放率对胶接接头强度性能的影响。结果表明:胶接接头强度随初始裂纹长度增加而降低,且在双搭接接头模型中表现更为明显;界面刚度、强度对胶接接头强度影响较大而应变能释放率的影响较小。

     

  • 图 1  界面双线性Traction-Separation本构

    Figure 1.  Bilinear Traction-Separation model of interface

    图 2  单/双搭接接头几何模型

    Figure 2.  Geometrical models of single- and double-lap joints

    图 3  XFEM/内聚力单元耦合有限元模型

    Figure 3.  Finite element model using XFEM/cohesive element coupling method

    图 4  搭接接头的载荷-位移曲线

    Figure 4.  Load-displacement curves of lap joints

    图 5  裂纹在胶层中的起始、扩展过程

    Figure 5.  Crack initiation and propagation process in adhesive layer

    图 6  2种不同界面建模方法的界面分层情况对比

    Figure 6.  Comparison of interface debonding between two interface modeling methods

    图 7  搭接接头载荷-位移曲线随裂纹长度的变化

    Figure 7.  Variation of load-displacement curves with crack length for lap joints

    图 8  搭接接头载荷-位移曲线随界面刚度的变化

    Figure 8.  Variation of load-displacement curves with interface stiffness for lap joints

    图 9  搭接接头载荷-位移曲线随界面强度的变化

    Figure 9.  Variation of load-displacement curves with interface strength for lap joints

    表  1  AW6082/T651和AV138材料参数[19]

    Table  1.   Material parameters of AW6082/T651 and AV138[19]

    参数 AW6082/T651 AV138
    E/MPa 70 070 4 890
    ν 0.33 0.35
    δf/MPa 324 39.45
    τf/MPa 30.2
    GⅠC/(N·mm-1) 0.2
    GⅡC/(N·mm-1) 0.38
    注:E—弹性模量; ν—泊松比; δf—法向强度; τf—剪切强度。
    下载: 导出CSV

    表  2  界面性能参数

    Table  2.   Parameters of interface properties

    参数 数值
    K/(N·mm-3) 1×106
    N/MPa 39.45
    S=T/MPa 30.2
    GⅠC/(mJ·mm-2) 0.2
    GⅡC=GⅢC/(mJ·mm-2) 0.38
    下载: 导出CSV

    表  3  网格数量对单搭接接头最大载荷-位移预测结果的影响

    Table  3.   Influence of element number on predicted maximum load-displacement results of single-lap joint

    网格数量 最大载荷/N 位移/mm
    750 5 602.63 0.201
    1 500 5 544.73 0.193
    3 000 5 543.71 0.192
    6 000 5 407.28 0.190
    下载: 导出CSV

    表  4  单搭接模型最大载荷-位移数据与试验数据对比

    Table  4.   Comparison of maximum load-displacement result and test result for single-lap joint model

    数据及相对误差 最大载荷/N 位移/mm
    试验数据 5 500.2 0.205
    仿真数据 内聚力单元 5 535 0.190
    内聚力接触 5 551 0.178
    相对误差/% 内聚力单元 0.6 7.3
    内聚力接触 0.9 17.0
    下载: 导出CSV
  • [1] BUDHE S, BANEA M D, BARROS S D.An updated review of adhesively bonded joints in composite materials[J].International Journal of Adhesion and Adhesives, 2017, 72:30-42. doi: 10.1016/j.ijadhadh.2016.10.010
    [2] SANTOS T F, CAMPILHO R D S G.Numerical modeling of adhesively-bonded double-lap joints by the extented finite element method[J].Finite Elements in Analysis Design, 2017, 133(1):1-9. http://www.sciencedirect.com/science/article/pii/S0168874X16304346
    [3] KINLOCH A J.Adhesion and adhesives:Science and technology[M].2nd ed.London:Chapman & Hall, 1987.
    [4] SHIN K C, LEE J J.Bond parameters to improve tensile load bearing capacities of co-cured single and double lap joints with steel and carbon fiber-epoxy composite adherends[J].Journal of Composite Mater, 2003, 37(3):401-420. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=9469015&site=ehost-live
    [5] RIBEIRO T E A, CAMPILHO R D S G, SILVA L F M D.Damage analysis of composite-aluminium adhesively-bonded single-lap joints[J].Composite Structures, 2016, 136:25-33. doi: 10.1016/j.compstruct.2015.09.054
    [6] MOYA-SANZ E M, IVAÑEZ I, GARCIA-CASTILLO S K.Effect of the geometry in the strength of single-lap adhesive joints of composite laminates under uniaxial tensile load[J].International Journal of Adhesion and Adhesives, 2017, 72:23-29. doi: 10.1016/j.ijadhadh.2016.10.009
    [7] XARÁ J T S, CAMPILHO R D S G.Strength estimation of hybrid single-L bonded joints by the extended finite element method[J].Composite Structures, 2018, 183:397-406. doi: 10.1016/j.compstruct.2017.04.009
    [8] MUBASHAR A, ASHCROFT I A, CROCOMBE A D.Modelling damage and failure in adhesive joints using a combined XFEM-cohesive element methodology[J].The Journal of Adhesion, 2014, 90(8):682-697. doi: 10.1080/00218464.2013.826580
    [9] STUPARU F A, APOSTOL D A, CONSTANTINESCU D M.Cohesive and XFEM evaluation of adhesive failure for dissimilar single-lap joints[J].Procedia Structural Integrity, 2016, 2:316-325. doi: 10.1016/j.prostr.2016.06.041
    [10] 冯威, 徐绯, 由昊.XFEM与CZM耦合下斜接修补复合材料的胶层损伤和缺陷分析[J].复合材料学报, 2018, 35(5):328-334. http://d.old.wanfangdata.com.cn/Periodical_fhclxb201805038.aspx

    FENG W, XU F, YOU H.Adhesive damage and defect analysis of scarf-repaired composite by combining XFEM and CZM[J].Acta Materiae Compositae Sinica, 2018, 35(5):328-334(in Chinese). http://d.old.wanfangdata.com.cn/Periodical_fhclxb201805038.aspx
    [11] ZHI J, ZHAO L B, ZHANG J Y, et al.A numerical method for simulating the microscopic damage evolution in composite under uniaxial transverse tension[J].Applied Composite Materials, 2016, 23(3):255-269. doi: 10.1007/s10443-015-9459-y
    [12] STUPARU F, CONSTANTINESCU D M, SANDU M.A combined cohesive elements-XFEM approach for analyzing crack propagation in bonded joints[J].The Journal of Adhesion, 2016, 92(7-9):535-552. doi: 10.1080/00218464.2015.1115355
    [13] MOËS N, DOLBOW J, BELYTSCHKO T.A finite element method for crack growth without remeshing[J].International Journal for Numerical Methods in Engineering, 1999, 46(1):131-150.
    [14] 庄茁.扩展有限单元法[M].北京:清华大学出版社, 2012:35-36.

    ZHUANG Z.Extented finite element method[M].Beijing:Tsinghua University Press, 2012:35-36(in Chinese).
    [15] MELENK J M, BABUSKA I.The partition of unity finite element method:Basic theory and applications[J].Computer Methods in Applied Mechanics and Engineering, 1996, 139(1-4):289-314. doi: 10.1016/S0045-7825(96)01087-0
    [16] 张绍云.基于扩展有限元法的螺旋裂纹扩展研究[D].杭州: 浙江大学, 2013.

    ZHANG S Y.Study on helical crack propagation by extended finite element method[D].Hangzhou: Zhejiang University, 2013(in Chinese).
    [17] 冯坤.基于扩展有限元法与水平集法的结构裂纹扩展特性研究[D].杭州: 浙江大学, 2013.

    FENG K.Structural crack propagation properties research based on the extended finite element method and level set method[D].Hangzhou: Zhejiang University, 2013(in Chinese).
    [18] 胡丹.碳纤维增强复合材料界面裂纹扩展及损伤研究[D].北京: 北京化工大学, 2016.

    HU D.Study on the interfacial cracking and damage of the carbon fiber reinforced composite[D].Beijing: Beijing University of Chemical Technology, 2016(in Chinese).
    [19] CAMPILHO R D S G, BANEA M D, PINTO A M G.Strength prediction of single- and double-lap joints by standard and extended finite element modelling[J].International Journal of Adhesion and Adhesives, 2010, 31(5):363-372. http://www.sciencedirect.com/science/article/pii/S0143749611000273
    [20] ZHAO L B, GONG Y, ZHANG J Y.Simulation of delamination growth in multidirectional laminates under mode I/II loading using cohesive elements[J].Composite Structures, 2014, 116:509-522. doi: 10.1016/j.compstruct.2014.05.042
    [21] CHEN J Y, RAVEY E, HALLETT S, et al.Prediction of delamination in braided composite T-piece specimens[J].Composites Science and Technology, 2009, 69(14):2363-2367. doi: 10.1016/j.compscitech.2009.01.027
    [22] PEZZOTTA M, ZHANG Z L.Effect of thermal mismatch residual stresses on grain boundary microcracking of titanium diboride ceramics[J].Journal of Materials Science, 2010, 45(2):382-391. doi: 10.1007/s10853-009-3952-3
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  600
  • HTML全文浏览量:  34
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-11
  • 录用日期:  2019-12-06
  • 网络出版日期:  2020-11-20

目录

    /

    返回文章
    返回
    常见问答