留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间遥感器用环路热管瞬态数值模拟与在轨验证

孟庆亮 杨涛 于志 赵振明 赵宇 于峰

孟庆亮, 杨涛, 于志, 等 . 空间遥感器用环路热管瞬态数值模拟与在轨验证[J]. 北京航空航天大学学报, 2020, 46(11): 2045-2055. doi: 10.13700/j.bh.1001-5965.2019.0584
引用本文: 孟庆亮, 杨涛, 于志, 等 . 空间遥感器用环路热管瞬态数值模拟与在轨验证[J]. 北京航空航天大学学报, 2020, 46(11): 2045-2055. doi: 10.13700/j.bh.1001-5965.2019.0584
MENG Qingliang, YANG Tao, YU Zhi, et al. Transient numerical simulation and on-orbit verification of loop heat pipe used for space remote sensor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2045-2055. doi: 10.13700/j.bh.1001-5965.2019.0584(in Chinese)
Citation: MENG Qingliang, YANG Tao, YU Zhi, et al. Transient numerical simulation and on-orbit verification of loop heat pipe used for space remote sensor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2045-2055. doi: 10.13700/j.bh.1001-5965.2019.0584(in Chinese)

空间遥感器用环路热管瞬态数值模拟与在轨验证

doi: 10.13700/j.bh.1001-5965.2019.0584
基金项目: 

国家自然科学基金 51806010

详细信息
    作者简介:

    孟庆亮  男, 博士, 高级工程师。主要研究方向:微重力下两相流动与传热

    通讯作者:

    孟庆亮, E-mail: qlmeng@mail.ustc.edu.cn

  • 中图分类号: V416;TK124

Transient numerical simulation and on-orbit verification of loop heat pipe used for space remote sensor

Funds: 

National Natural Science Foundation of China 51806010

More Information
  • 摘要:

    为满足空间遥感器环路热管(LHP)在轨应用需求,建立了高分九号卫星电荷耦合器件(CCD)用LHP瞬态数值模型。模型采用了节点-网络法和流动与传热关系式耦合的方法,考虑了蒸发器与储液器之间的传热传质过程。通过仿真与在轨数据的对比,发现LHP内部组件温度偏差为0.2~0.4℃,冷凝器测点温度偏差为0.5~2.0℃;预热器通过干度的变化调节了冷凝器外热流和热源工作模式的影响;热源的工作模式对蒸发器向储液器漏热、回路流阻及两相段长度均有影响。所提模型可用于不同轨道外热流及热源工作模式下,研究LHP内部各参数的变化规律,预测LHP系统的瞬态工作特性,并指导后续产品的设计与研发。

     

  • 图 1  空间遥感器用LHP工作原理图和实物图

    Figure 1.  Working principle and photo of LHP forspace remote sensor

    图 2  热模型和流体模型示意图

    Figure 2.  Schematic diagram of thermal and flow models

    图 3  毛细泵的示意图和热网络图

    Figure 3.  Schematic diagram of capillary pumped and thermal network

    图 4  冷凝器A和冷凝器B外热流随时间变化趋势

    Figure 4.  Temporal evolution of external heat flux of condenser A and B

    图 5  蒸发器与储液器的仿真与在轨温度对比

    Figure 5.  Comparison of on-orbit temperature between simulation and test for evaporator and accumulator

    图 6  CCD冷板的仿真与在轨温度对比

    Figure 6.  Comparison of on-orbit temperature between simulation and test for CCD cold plates

    图 7  冷凝器的仿真与在轨温度对比

    Figure 7.  Comparison of on-orbit temperature between simulation and test for condenser

    图 8  预热器内流体的温度和干度随时间的变化曲线

    Figure 8.  Temporal evolution of fluid temperature and degree of dryness in pre-heater

    图 9  CCD冷板内流体的温度和干度随时间的变化曲线

    Figure 9.  Temporal evolution of fluid temperature anddegree of dryness in CCD cold plates

    图 10  蒸发器向储液器漏热量随时间的变化曲线

    Figure 10.  Temporal evolution of heat leak from evaporator to accumulator

    图 11  LHP系统流阻随时间的变化曲线

    Figure 11.  Temporal evolution of LHP system flow resistance

    图 12  冷凝器的温度分布云图

    Figure 12.  Temperature distribution contour of condenser

    表  1  LHP的基本参数

    Table  1.   Basic parameters of LHP

    零件 材料 物理参数
    蒸发器 不锈钢 Φ19 mm×125 mm
    储液器 不锈钢 Φ36 mm×140 mm
    毛细芯 氮化硅 孔径:1 μm;孔隙率:65%;外径×长度:Φ14 mm×200 mm
    CCD冷板 不锈钢 长×宽×高:108 mm×20 mm×4 mm
    预热器 不锈钢 长×宽×高:80 mm×50 mm×4 mm
    冷凝器 铝合金 面积:0.33 m2(主)、0.35 m2(副)
    冷凝管路 不锈钢 长度:6 m(主),5 m(副);管径:Φ33 mm;壁厚:0.5 mm
    下载: 导出CSV

    表  2  LHP的温控组件参数

    Table  2.   Parameters of temperature control components of LHP

    零件 加热功率/W 控温阈值/℃ 辐射或隔热措施
    蒸发器 50 30~31 隔热安装
    储液器 10 3~7 隔热安装
    预热器 10 30~31 包覆多层
    冷凝器A
    冷凝器B
    10
    10
    -41~-40
    -41~-40
    辐射面喷涂热控涂层
    管路 包覆多层
    下载: 导出CSV
  • [1] HOLST G C.CCD arrays, cameras, and displays[M].Bellingham:SPIE, 1996.
    [2] 鲁盼, 赵振明, 颜吟雪.高分辨率遥感相机CCD器件精密热控制[J].航天返回与遥感, 2014, 35(4):59-66. http://www.cnki.com.cn/Article/CJFDTotal-HFYG201404009.htm

    LU P, ZHAO Z M, YAN Y X.Precise thermal control of CCD in high resolution remote sensing[J].Spacecraft Recovery & Remote Sensing, 2014, 35(4):59-66(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HFYG201404009.htm
    [3] 童叶龙, 李国强, 余雷, 等.CCD组件的热分析和热实验[J].航天返回与遥感, 2014, 35(5):46-53. http://www.cnki.com.cn/Article/CJFDTotal-HFYG200303003.htm

    TONG Y L, LI G Q, YU L, et al.Heat dissipation and precise temperature control for high-power CCD assembly[J].Spacecraft Recovery & Remote Sensing, 2014, 35(5):46-53(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HFYG200303003.htm
    [4] 李春林.空间光学遥感器热控技术研究[J].宇航学报, 2014, 35(8):863-870.

    LI C L.Research on space optical remote sensor thermal control technique[J].Journal of Astronautics, 2014, 35(8):863-870(in Chinese).
    [5] 苗建印, 张红星, 吕巍, 等.航天器热传输技术研究进展[J].航天器工程, 2010, 19(2):106-112. http://www.cnki.com.cn/Article/CJFDTotal-HTGC201002015.htm

    MIAO J Y, ZHANG H X, LV W, et al.Development of heat transfer technologies for spacecraft[J].Spacecraft Engineering, 2010, 19(2):106-112(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HTGC201002015.htm
    [6] 张畅, 谢荣建, 张添, 等.液氮温区平板蒸发器环路热管实验研究[J].北京航空航天大学学报, 2019, 45(6):1211-1217. doi: 10.13700/j.bh.1001-5965.2018.0623

    ZHANG C, XIE R J, ZHANG T, et al.Experimental study on a liquid nitrogen temperature region loop heat pipe with flat evaporator[J].Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6):1211-1217(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0623
    [7] 赵振明, 孟庆亮, 张焕冬, 等.CCD器件用机械泵驱动两相流体回路仿真与实验[J].北京航空航天大学学报, 2019, 45(5):893-901. doi: 10.13700/j.bh.1001-5965.2018.0519

    ZHAO Z M, MENG Q L, ZHANG H D, et al.Simulation and experimental study of mechanically pumped two-phase loop for CCD[J].Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5):893-901(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0519
    [8] GAO T, YANG T, ZHAO S L, et al.The design and application of temperature control loop heat pipe for space CCD camera[C]//46th International Symposium of Space Optical Instrument and Application, 2017: 15-20.
    [9] CHUANG P.An improved steady-state model of loop heat pipes based on experimental and theoretical analyses[D].State College: Pennsylvania State University, 2003.
    [10] KAYA T, PÉREZ R, GREGORI C, et al.Numerical simulation of transient operation of loop heat pipes[J].Applied Thermal Engineering, 2008, 28(8-9):967-974. doi: 10.1016/j.applthermaleng.2007.06.037
    [11] ADONI A, AMBIRAJAN A, JASVANTH V, et al.Thermohydraulic modeling of capillary pumped loop and loop heat pipe[J].Journal of Thermophysics and Heat Transfer, 2007, 21(2):410-421.
    [12] BAI L, LIN G P, ZHANG H X, et al.Mathematical modeling of steady-state operation of a loop heat pipe[J].Applied Thermal Engineering, 2009, 29(13):2643-2654. doi: 10.1016/j.applthermaleng.2008.12.040
    [13] RIVIÉRE N, SARTRE V, BONJOUR J.Fluid mass distribution in a loop heat pipe with flat evaporator[C]//15th International Heat Pipe Conference, 2010: hal-00541426.
    [14] WRENN K R, ALLEN R D, HOANG T T, et al.Verification of a transient loop heat pipe model: 1999-01-2010[R].Warrendale: SAE Technical Paper, 1999.
    [15] HOANG T, KU J.Transient modeling of loop heat pipes: AIAA-2003-6082[R].Reston: AIAA, 2003.
    [16] POUZET E, JOLY J L, PLATEL V, et al.Dynamic response of a capillary pumped loop subjected to various heat load transients[J].International Journal of Heat and Mass Transfer, 2004, 47(10-11):2293-2316. doi: 10.1016/j.ijheatmasstransfer.2003.11.003
    [17] CULLIMORE B, BAUMANN J.Steady state and transient loop heat pipe modeling: 2000-01-2316[R].Warrendale: SAE Technical Paper, 2000.
    [18] ZINNA S, MARENGO M, MOLINA M.Numerical model of the LHP for the thermal control of the cryomagnet avionic box (CAB) mounted on the AMS-02 experiment[C]//Ⅶ Minsk International Seminar "Heat pipes, Heat pumps, Refrigerators, Power Sources", 2008: 351-359.
    [19] XIN G, CHENG Y, LUAN T, et al.Simulation of a LHP-based thermal control system under orbital environment[J].Applied Thermal Engineering, 2009, 29(13):2726-2730. doi: 10.1016/j.applthermaleng.2009.01.011
    [20] 何发龙, 杜王芳, 赵建福, 等.深冷环路热管瞬态数值仿真研究[J].载人航天, 2018, 24(4):515-519. http://www.cnki.com.cn/Article/CJFDTotal-ZRHT201804014.htm

    HE F L, DU W F, ZHAO J F, et al.Study on transient numerical simulation of cryogenic loop heat pipe[J].Manned Spaceflight, 2018, 24(4):515-519(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-ZRHT201804014.htm
    [21] KU J T.Operating characteristics of loop heat pipe[C]//29th International Conference on Environmental System, 1999: 1991-01-2007.
    [22] 弗兰克P·英克鲁佩勒, 大卫P·德维特, 狄奥多尔L·伯格曼, 等.传热和传质基本原理[M].葛新石, 叶宏, 译.北京: 化学工业出版社, 2011: 297-332.

    INCROPERA F P, DEWITT D P, BERGMAN T L, et al.Fundamentals of heat and mass transfer[M].GE X S, YE H, translated.Beijing: Chemical Industry Press, 2011: 297-332(in Chinese).
    [23] SHAH M M.Prediction of heat transfer during boiling of cryogenics fluids flowing in tubes[J].Cryogenics, 1984, 24(5):231-236.
    [24] CHURCHILL S W.Friction factor equation spans all fluid-flow regimes[J].Chemical Engineering Journal, 1977, 84(24):91-92.
    [25] FRIEDEL L.Improved friction pressure drop correlation for horizontal and vertical two-phase pipe flow[C]//European Two-Phase Flow Group Meeting, 1979: 485-492.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  535
  • HTML全文浏览量:  68
  • PDF下载量:  212
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-14
  • 录用日期:  2019-12-22
  • 网络出版日期:  2020-11-20

目录

    /

    返回文章
    返回
    常见问答