留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GSO卫星系统布设中的通信干扰评估方法

董苏惠 姚秀娟 高翔 韩朝晖 闫毅 孙云龙

董苏惠, 姚秀娟, 高翔, 等 . GSO卫星系统布设中的通信干扰评估方法[J]. 北京航空航天大学学报, 2020, 46(11): 2184-2194. doi: 10.13700/j.bh.1001-5965.2019.0596
引用本文: 董苏惠, 姚秀娟, 高翔, 等 . GSO卫星系统布设中的通信干扰评估方法[J]. 北京航空航天大学学报, 2020, 46(11): 2184-2194. doi: 10.13700/j.bh.1001-5965.2019.0596
DONG Suhui, YAO Xiujuan, GAO Xiang, et al. Communication interference assessment methods in GSO satellite system deployment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2184-2194. doi: 10.13700/j.bh.1001-5965.2019.0596(in Chinese)
Citation: DONG Suhui, YAO Xiujuan, GAO Xiang, et al. Communication interference assessment methods in GSO satellite system deployment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2184-2194. doi: 10.13700/j.bh.1001-5965.2019.0596(in Chinese)

GSO卫星系统布设中的通信干扰评估方法

doi: 10.13700/j.bh.1001-5965.2019.0596
基金项目: 

科工局民用航天预先研究项目 1ZY4660103

中国科学院空间科学战略性先导科技专项 XDA15060100

详细信息
    作者简介:

    董苏惠:蕫苏惠  女, 博士研究生。主要研究方向:空间频谱感知技术、认知无线电技术等

    姚秀娟  女, 博士, 研究员。主要研究方向:空间互联网通信技术、空间频谱感知技术、空间协议识别技术等

    高翔  男, 博士, 副研究员。主要研究方向:低轨互联网通信技术、空间频谱资源兼容性技术、高动态时空抗干扰技术等

    通讯作者:

    姚秀娟, E-mail: yaoxj@nssc.ac.cn

  • 中图分类号: TN972

Communication interference assessment methods in GSO satellite system deployment

Funds: 

State Administration of Science, Technology and Industry Civil Aerospace Advance Research Projects 1ZY4660103

Chinese Academy of Sciences Strategic Priority Program on Space Science XDA15060100

More Information
  • 摘要:

    针对地球静止轨道(GSO)卫星系统在卫星和地球站布设中的同频干扰评估问题,设计了地球站及卫星的全球分布对下行和上行通信链路的干扰评估场景,以及考虑波束业务特征影响的多条链路的集总干扰场景,构建了不同场景下的干扰评估和分析计算的模型,提出了一种基于干扰函数极值的评估方法。所提方法通过建立干扰系统地球站的随机分布集合和受扰系统的干扰函数,结合国际电联(ITU)提供的全球地形数据、天线波束参数、电磁波传播模型,能够实现对2个GSO卫星系统间的卫星轨位和地球站布设的定量化计算分析。采用所提方法对位于47°E±6°的GSO卫星系统、位于(23°N,26°E)地球站的同向下行链路,以及位于(23°N,26°E)的地球站对26°E±6°的GSO卫星系统的同向上行链路的干扰情况进行了定量化计算。结果表明:在卫星轨位间隔为2°时的干扰噪声比值为-12.29 dB,与ITU建议书中规定的-12.2 dB的限值之间的误差为0.7%,证明了所提方法的有效性和可行性。所提方法还可以统计GSO卫星系统在任意角度间隔和全球布设场景下的干扰分布情况,对于干扰评估和规避措施的制定具有一定的借鉴意义。

     

  • 图 1  同向下行链路干扰场景

    Figure 1.  Co-directional downlink interference scenario

    图 2  在赤道180°W~180°E上降雨、云雾、气体吸收引起的衰减分布

    Figure 2.  Distribution of attenuation caused by rainfall, cloud, fog and atmospheric absorption at 180°W-180°E in the equator

    图 3  干扰系统地球站在不同区域分布情况下的下行链路I/N变化曲面图和等值线图(未包括电波传播损耗)

    Figure 3.  Downlink I/N variation surface map and contour map of interference system earth station in different regions (excluding electromagnetic wave propagation loss)

    图 4  地球站在不同区域分布情况下2颗GSO卫星之间的下行链路I/N曲面图(未包括电波传播损耗)

    Figure 4.  Downlink I/N distribution surface map between two GSO satellites when earth stations are distributed in different regions(excluding electromagnetic wave propagation loss)

    图 5  地球站在不同区域分布时与干扰GSO卫星间的仰角情况

    Figure 5.  Elevation angle between earth stations and interfering GSO satellite when earth stations are distributed in different regions

    图 6  地球站在不同区域分布情况下2颗GSO卫星之间的下行链路I/N曲面图和等值线图

    Figure 6.  Downlink I/N surface map and contour map between two GSO satellites with earth stations in different regions

    图 7  在(23°N, 26°E)布设地球站,受扰GSO卫星在不同轨位时的下行链路最坏干扰分布情况

    Figure 7.  The worst interference distribution of downlink interfered GSO satellite at different orbital positions with earth stations deployed at (23°N, 26°E)

    图 8  同向上行链路干扰场景

    Figure 8.  Co-directional uplink interference scenario

    图 9  干扰系统GSO卫星在不同轨位下2个地球站之间上行链路的I/N变化曲面图(未包括电波传播损耗)

    Figure 9.  Uplink I/N variation surface map between two earth stations of interference system GSO satellite at different orbital positions (excluding electromagnetic wave propagation loss)

    图 10  GSO卫星在不同轨位下2个地球站之间上行链路的I/N变化曲面图

    Figure 10.  Uplink I/N variation surface map between two earth stations of GSO satellites at different orbital positions

    图 11  GSO卫星在22°E、24°E、26°E、28°E、30°E时,I/N随轨道倾角的变化曲线

    Figure 11.  Change of I/N with orbital inclination angle of GSO satellite at 22°E, 24°E, 26°E, 28°E and 30°E

    图 12  多波束GSO卫星系统间的集总干扰场景

    Figure 12.  Integrated interference scenario between multi-beam GSO satellite systems

    图 13  四色划分方案

    Figure 13.  Four-color division scheme

    图 14  3种功率分配方案下的多波束卫星系统间的集总干扰

    Figure 14.  Integrated interference between multi-beam satellite systems with three power allocation schemes

    图 15  下行链路干扰GSO卫星与受扰系统GSO卫星在不同轨位间隔下I/NC/NC/IC/(I+N)的曲线

    Figure 15.  Curves of I/N, C/N, C/I, C/(I+N) at different orbital intervals between downlink interfering GSO satellites and interfered GSO satellites

    图 16  上行链路干扰GSO卫星与受扰系统GSO卫星在不同轨位间隔下I/NC/NC/IC/(I+N)的曲线

    Figure 16.  Curves of I/N, C/N, C/I, C/(I+N) at different orbital intervals between uplink interference GSO satellites and interfered systems GSO satellites

    图 17  上行链路干扰地球站与受扰系统地球站在不同经纬度间隔下I/N的曲线

    Figure 17.  Curves of I/N with uplink interfering earth station and interfered systems earth station at different latitude and longitude intervals

    图 18  反向上行链路干扰场景

    Figure 18.  Reverse uplink interference scenario

    图 19  反向链路干扰GSO卫星与受扰GSO卫星在不同轨位间隔下I/NC/NC/IC/(I+N)的变化曲线

    Figure 19.  Curves of reverse link I/N, C/N, C/I, C/(I+N) with interfering GSO satellite and interfered GSO satellite at different orbital intervals

    表  1  GSO卫星系统下行链路干扰场景波束及空口参数

    Table  1.   Beam and air interface parameters of GSO satellite system downlink interference scenario

    参数 干扰系统 受扰系统
    通信频率/GHz 25 25
    通信带宽/MHz 125 125
    地球站接收天线峰值增益/dBi 68.4 68.4
    卫星发射功率/dBW 30 30
    卫星发射天线峰值增益/dBi 43.6 43.6
    极化方式 RHCP RHCP
    地球站接收机天线噪声温度/K 180 180
    下载: 导出CSV

    表  2  GSO卫星系统上行链路干扰场景波束及空口参数

    Table  2.   Beam and air interface parameters of GSO satellite system uplink interference scenario

    参数 干扰系统 受扰系统
    通信频率/GHz 27.55 27.55
    通信带宽/MHz 125 125
    地球站发射天线峰值增益/dBi 65 65
    地球站发射功率/dBW 21.7 21.7
    卫星接收天线峰值增益/dBi 31.2 31.2
    极化方式 RHCP RHCP
    卫星接收机天线噪声温度/K 600 600
    下载: 导出CSV

    表  3  干扰场景评估用例下行数传参数

    Table  3.   Downlink transmission parameters of interference scenario evaluation example

    参数 干扰系统 受扰系统
    通信频率/GHz 25 25
    通信带宽/GHz 3.5 3.5
    地球站接收天线峰值增益/dBi 66 66
    卫星发射功率/dBW 21 21
    卫星发射天线峰值增益/dBi 54 54
    极化方式 RHCP RHCP
    地球站接收机天线噪声温度/K 200 200
    下载: 导出CSV

    表  4  干扰场景评估用例上行数传参数

    Table  4.   Uplink transmission parameters of interference scenario evaluation example

    参数 干扰系统 受扰系统
    通信频率/GHz 25 25
    通信带宽/GHz 3.5 3.5
    地球站发射天线峰值增益/dBi 69.9 69.9
    地球站发射功率/dBW 33 33
    卫星接收天线峰值增益/dBi 45 45
    极化方式 MP MP
    卫星接收机天线噪声温度/K 800 800
    下载: 导出CSV
  • [1] ITU-R.Apportionment of the allowable error performance degradations to fixed-satellite service (FSS) hypothetical reference digital paths arising from time invariant interference for systems operating below 30 GHz: ITU-R S.1432-1[S].Geneva: ITU, 2006.
    [2] ITU-R.Technical coordination methods for fixed-satellite networks: ITU-R S.740-0[S].Geneva: ITU, 1992.
    [3] ITU-R.Carrier-to-interference calculations between networks in the fixed-satellite service: ITU-R S.741-0[S].Geneva: ITU, 1992.
    [4] ITU-R.Procedure for determining if coordination is required between geostationary-satellite networks sharing the same frequency bands: ITU-R S.738-0[S].Geneva: ITU, 1992.
    [5] ITU-R.Relationship of technical coordination methods within the fixed-satellite service: ITU-R S.737-0[S].Geneva: ITU, 1992.
    [6] ITU-R.Additional methods for determining if detailed coordination is necessary between geostationary-satellite networks in the fixed-satellite service sharing the same frequency bands: ITU-R S.739-0[S].Geneva: ITU, 1992.
    [7] BUTZIEN P.Radio system interference from geostationary satellites[J].IEEE Transactions on Communications, 1981, 29(1):33-40. doi: 10.1109/TCOM.1981.1094873
    [8] LIVIERATOS S N, GINIS G, COTTIS P G.Availability and performance of satellite links suffering from interference by an adjacent satellite and rain fades[J].IEEE Proceedings-Communications, 1999, 146(1):61-67. doi: 10.1049/ip-com:19990285
    [9] PARK C S, KANG C G, CHOI Y S, et al.Interference analysis of geostationary satellite networks in the presence of moving non-geostationary satellites[C]//2010 2nd International Conference on IEEE, Information Technology Convergence and Services (ITCS).Piscataway: IEEE Press, 2010: 1-5.
    [10] 谢继东, 魏清, 冯加骥.同步轨道邻星干扰分析[J].南京邮电大学学报(自然科学版), 2013, 33(6):33-38. http://www.cqvip.com/QK/95955X/201306/48346773.html

    XIE J D, WEI Q, FENG J J.Analysis of adjacent satellite interference of geostationary orbit[J].Journal of Nanjing University of Posts and Telecommunications (Natural Science), 2013, 33(6):33-38(in Chinese). http://www.cqvip.com/QK/95955X/201306/48346773.html
    [11] 韩其位, 聂俊伟, 刘文祥, 等.Ka频段星间链路干扰强度及可行性分析[J].中南大学学报(自然科学版), 2014, 45(3):769-773. http://www.cqvip.com/QK/90745B/20143/661911571.html

    HAN Q W, NIE J W, LIU W X, et al.Analysis of interference intension and feasibility for Ka-band inter-satellite links[J].Journal of Central South University (Natural Science), 2014, 45(3):769-773(in Chinese). http://www.cqvip.com/QK/90745B/20143/661911571.html
    [12] 韩锐, 杨夏青, 石会鹏, 等.COMPASS系统与CTDRS系统Ka频段星间链路干扰仿真研究[J].南京邮电大学学报(自然科学版), 2017, 37(2):33-37. http://www.cnki.com.cn/Article/CJFDTOTAL-NJYD201702006.htm

    HAN R, YANG X Q, SHI H P, et al.Simulation of interference between COMPASS and CTDRS systems with inter-satellite in Ka band[J].Journal of Nanjing University of Posts and Telecommunications (Natural Science), 2017, 37(2):33-37(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-NJYD201702006.htm
    [13] CAO T, LI D, REN A, et al.Application of computer simulation in interference assessment between satellite systems[C]//Geo-Informatics in Resource Management and Sustainable Ecosystem (GRMSE), Communications in Computer and Information Science.Berlin: Springer, 2016: 426-432.
    [14] 郭强, 刘波, 司圣平, 等.卫星通信系统邻星干扰分析方法研究[J].上海航天, 2017, 34(3):131-135. http://www.cqvip.com/QK/95123X/20173/673647041.html

    GUO Q, LIU B, SI S P, et al.Analysis method study of satellite communications system adjacent interference[J].Aerospace Shanghai, 2017, 34(3):131-135(in Chinese). http://www.cqvip.com/QK/95123X/20173/673647041.html
    [15] ITU-R.Radiation diagrams for use as design objectives for antennas of earth stations operating with geostationary satellites: ITU-R S.580-6[S].Geneva: ITU, 2004.
    [16] ITU-R.Reference radiation pattern of earth station antennas in the fixed-satellite service for use in coordination and interference assessment in the frequency range from 2 to 31 GHz: ITU-R.465-6[S].Geneva: ITU, 2010.
    [17] ITU-R.Satellite antenna radiation pattern for use as a design objective in the fixed-satellite service employing geostationary satellites: ITU-R S.672-4[S].Geneva: ITU, 1997.
    [18] ITU-R.Topography for earth-to-space propagation modelling: ITU-R P.1511-2[S].Geneva: ITU, 2019.
    [19] SHARMA S K, CHATZINOTAS S, OTTERSTEN B.In-line interference mitigation techniques for spectral coexistence of GEO and NGEO satellites[J].International Journal of Satellite Communications and Networking, 2016, 34(1):11-39. doi: 10.1002/sat.1090
    [20] 靳瑾, 李娅强, 匡麟玲, 等.全球动态场景下非静止轨道通信星座干扰发生概率和系统可用性[J].清华大学学报(自然科学版), 2018, 58(9):833-840. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhdxxb201809011

    JIN J, LI Y Q, KUANG L L, et al.Occurence probability of co-frequency interference and system availability of non-geostationary satellite system in global dynamic scene[J].Journal of Tsinghua University (Science and Technology), 2018, 58(9):833-840(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhdxxb201809011
    [21] ITU-R.Calculation of free-space attenuation: ITU-R P.525-4[S].Geneva: ITU, 2019.
    [22] ITU-R.Propagation data and prediction methods required for the design of earth-space telecommunication systems: ITU-R P.618-13[S].Geneva: ITU, 2017.
    [23] ITU-R.Characteristics of precipitation for propagation modeling: ITU-R P.837-7[S].Geneva: ITU, 2017.
    [24] ITU-R.Specific attenuation model for rain for use in prediction methods: ITU-R P.838-3[S].Geneva: ITU, 2005.
    [25] ITU-R.Rain height model for prediction methods: ITU-R P.839-4[S].Geneva: ITU, 2013.
    [26] ITU-R.Attenuation due to clouds and fog: ITU-R P.840-7[S].Geneva: ITU, 2017.
    [27] ITU-R. Attenuation by atmospheric gases: ITU-R P.676-11[S].Geneva: ITU, 2016.
    [28] ITU-R.Reference standard atmospheres: ITU-R P.835-6[S].Geneva: ITU, 2017.
    [29] ITU-R.Functional description to be used in developing software tools for determining conformity of non-geostationary-satellite orbit fixed-satellite service systems or networks with limits contained in Article 22 of the radio regulations: ITU-R S.1503-3[S].Geneva: ITU, 2018.
    [30] WHITEFIELD D, GOPAL R, ARNOLD S.Spaceway now and in the future: On-board IP packet switching satellite communication network[C]//Military Communication Conference.Washington, D.C.: Northrop Grumman, 2006: 1-7.
    [31] VASSAKI S, PANAGOPOULOS A D.Effective capacity and optimal power allocation for mobile satellite systems and services[J].IEEE Communications Letters, 2012, 16(1):60-63. doi: 10.1109/LCOMM.2011.110711.111881
    [32] 李广侠, 冯琦, 冯少栋.多点波束宽带卫星系统波束间功率优化分配算法[J].解放军理工大学学报(自然科学版), 2013, 14(1):1-6. http://d.wanfangdata.com.cn/Periodical/jfjlgdxxb201301001

    LI G X, FENG Q, FENG S D.Optimal inter-beam power allocation algorithm for multi-beam broadband satellite systems[J].Journal of PLA University of Science and Technology (Natural Science Edition), 2013, 14(1):1-6(in Chinese). http://d.wanfangdata.com.cn/Periodical/jfjlgdxxb201301001
    [33] DESTOUNIS A, PANAGOPOULOS A D.Dynamic power allocation for broadband multi-beam satellite communication networks[J].IEEE Communications Letters, 2011, 15(4):380-382. doi: 10.1109/LCOMM.2011.020111.102201
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  886
  • HTML全文浏览量:  138
  • PDF下载量:  215
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-22
  • 录用日期:  2020-03-13
  • 网络出版日期:  2020-11-20

目录

    /

    返回文章
    返回
    常见问答