留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SADRC的四旋翼姿态解耦控制及稳定性分析

万慧 齐晓慧 李杰

万慧, 齐晓慧, 李杰等 . 基于SADRC的四旋翼姿态解耦控制及稳定性分析[J]. 北京航空航天大学学报, 2020, 46(12): 2274-2283. doi: 10.13700/j.bh.1001-5965.2019.0620
引用本文: 万慧, 齐晓慧, 李杰等 . 基于SADRC的四旋翼姿态解耦控制及稳定性分析[J]. 北京航空航天大学学报, 2020, 46(12): 2274-2283. doi: 10.13700/j.bh.1001-5965.2019.0620
WAN Hui, Qi Xiaohui, LI Jieet al. Attitude decoupling control and stability analysis of SADRC based quadrotor system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(12): 2274-2283. doi: 10.13700/j.bh.1001-5965.2019.0620(in Chinese)
Citation: WAN Hui, Qi Xiaohui, LI Jieet al. Attitude decoupling control and stability analysis of SADRC based quadrotor system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(12): 2274-2283. doi: 10.13700/j.bh.1001-5965.2019.0620(in Chinese)

基于SADRC的四旋翼姿态解耦控制及稳定性分析

doi: 10.13700/j.bh.1001-5965.2019.0620
基金项目: 

陆军工程大学石家庄校区科研创新发展基金 School-level Projects (2019)71

详细信息
    作者简介:

    万慧  女, 博士研究生。主要研究方向:自抗扰控制、飞行器控制

    齐晓慧  女, 博士, 教授, 博士生导师。主要研究方向:控制理论与应用、飞行器控制

    李杰  男, 博士, 工程师。主要研究方向:控制理论与应用、自抗扰控制

    通讯作者:

    齐晓慧, E-mail: Xhui_qi@163.com

  • 中图分类号: TP273

Attitude decoupling control and stability analysis of SADRC based quadrotor system

Funds: 

Scientific Research Innovation Development Foundation of Army Engineering University Shijiazhuang Campus School-level Projects (2019)71

More Information
  • 摘要:

    针对四旋翼姿态控制欠驱动、强耦合的特性,提出了一种基于线性/非线性切换自抗扰控制(SADRC)的四旋翼姿态解耦控制方法。首先,以四旋翼平台为研究对象,建立了其姿态的数学模型,引入SADRC,对基本原理进行了介绍。其次,基于SADRC设计了四旋翼姿态解耦控制器,并基于Lyapunov函数对系统进行了稳定性分析。最后,通过仿真实验对SADRC控制性能进行了验证。结果表明:SADRC在某些场合抗干扰和鲁棒性方面较线性自抗扰控制(LADRC)和非线性自抗扰控制(NLADRC)具有优势,具有工程应用的潜力。

     

  • 图 1  四旋翼平台

    Figure 1.  Quadrotor aircraft platform

    图 2  SADRC切换策略

    Figure 2.  SADRC switch scheme

    图 3  λϕ01λϕ02λϕ03e变化的曲线

    Figure 3.  Curves of λϕ0i (i=1, 2, 3) changing with e

    图 4  四旋翼ϕθψ通道跟踪和抗扰效果

    Figure 4.  Tracking and anti-disturbance performance for quadrotor of ϕθψchannel

    图 5  四旋翼实际控制输入曲线

    Figure 5.  Curves of real control input for quadrotor

    图 6  参数摄动情况下3种控制方法的鲁棒性性能

    Figure 6.  Robustness performance for the three controlled quadrotor system

    表  1  LADRC、NLADRC、SADRC控制器参数选择

    Table  1.   Parameter preferences of LADRC, NLADRC, SADRC

    控制器 ϕ通道 θ通道 ψ通道
    LADRC[15] wo=28, wc=2.8, b0=0.424 wo=30, wc=3, b0=0.424 wo=30, wc=3.2, b0=0.213
    NLADRC[14] ESO α1=0.75, α2=0.5, α3=0.25,
    β01=30, β02=300, β03=1 000,
    b0=0.9, δ=0.006
    α1=0.75, α2=0.5, α3=0.25,
    β01=30, β02=300, β03=1 000,
    b0=0.9, δ=0.006
    α1=0.75, α2=0.5, α3=0.25,
    b0=0.06, δ=0.004, β01=30,
    β02=300, β03=1 000
    NLESF δ=3,α1=0.5, α2=0.05,
    β1=150, β2=120
    δ=3,α1=0.5, α2=0.05,
    β1=150, β2=120
    δ=1,α1=0.5, α2=0.05,
    β1=300, β2=180
    SADRC α1=1, α2=0.5, α3=0.25,
    wc=2.8, wo=30, woN=8,
    δs=0.005, b0=0.424,
    δ=0.002,β01=3woN,
    β02=3woN2/5, β03=woN3/9
    α1=1, α2=0.5, α3=0.25,
    wc=3, wo=30, woN=8,
    δs=0.005, b0=0.424,
    δ=0.002,β01=3woN,
    β02=3woN2/5, β03= w3oN/9
    α1=1, α2=0.5, α3=0.25,
    wc=3.2, wo=8, woN=8,
    δs=0.005, b0=0.213,
    δ=0.002,β01=3woN,
    β02=3woN2/5, β03= woN3/9
    注:α1α2α3分别为所设计控制器NLESO中非线性函数fal(e, αi, δ)对应αi(i=1, 2, 3)大小;wowc分别为LESO和控制器的带宽;b0为系统参数;δδs分别为切换自抗扰线性区间长度和切换临界值;β01β02β03为NLESO的增益;β1β2分别为控制分量u0的控制律增益;woN为NLESO带宽;h为离散步长。
    下载: 导出CSV
  • [1] 蒋回蓉, 邓志诚, 祝明, 等.变桨距四旋翼飞行器的建模与控制研究[J].电光与控制, 2015, 22(10):48-55.

    JIANG H R, DENG Z C, ZHU M, et al.On modeling and control of quadrotor aircraft with variable blade pitch[J].Electronics Optics & Control, 2015, 22(10):48-55(in Chinese).
    [2] DIERKS T, JAGANNATHAN S.Output feedback control of a quadrotor UAV using neural networks[J].IEEE Transactions on Neural Networks, 2010, 21(1):55-66.
    [3] 方旭, 刘金琨.四旋翼无人机动态面控制[J].北京航空航天大学学报, 2016, 42(8):1777-1784.

    FANG X, LIU J K.Dynamic surface control for quadrotor unmanned air vehicle[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(8):1777-1784(in Chinese).
    [4] 方旭, 刘金琨.四旋翼飞行器三维航迹规划及跟踪控制[J].控制理论与应用, 2015, 32(8):1120-1128.

    FANG X, LIU J K.Three-dimension path planning and trajectory tracking control for quadrotor unmanned aerial vehicle[J].Control Theory & Applications, 2015, 32(8):1120-1128(in Chinese).
    [5] CUI R, LI Y, YAN W.Mutual information-based multi-AUV path planning for scalar field sampling using multidimensional RRT*[J].IEEE Transactions on System, Man, and Cybernetics Systems, 2016, 46(7):993-1004.
    [6] HE L L, BAI P, LIANG X L, et al.Feedback formation control of UAV swarm with multiple implicit leaders[J].Aerospace Science and Technology, 2018, 72:327-334.
    [7] 郭民环, 苏岩, 朱欣华.带吊挂负载的四旋翼无人机滚动纳什控制[J].北京航空航天大学学报, 2018, 44(11):2343-2349.

    GUO M H, SU Y, ZHU X H.Receding Nash control for quadrotor UAVs carrying a cable-suspended payload[J].Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11):2343-2349(in Chinese).
    [8] BOUABDALLAH S, NOTH A, SIEGWART R.PID vs LQR control techniques applied to an indoor micro quadrotor[C]//2004 IEEE International Conference on Intelligent Robots and Systems.Piscataway: IEEE Press, 2004: 2451-2456.
    [9] BOUABDALLAH S, SIEGWART R.Backstepping and sliding-mode techniques applied to an indoor micro quadrotor[C]//2005 IEEE International Conference on Robotics and Automation.Piscataway: IEEE Press, 2005: 2247-2252.
    [10] NICOL C, MACNAB C J B, RAMIREZ-SERRANO A.A robust adaptive control of a quadrotor helicopter[J].Mechatronics, 2011, 21(6):927-938.
    [11] 蒋回蓉.变桨距四旋翼飞行器的建模与控制研究[D].北京: 北京航空航天大学, 2014.

    JIANG H R.On modeling and control of quadrotor aircraft with variable blade pitch[D].Beijing: Beihang University, 2014(in Chinese).
    [12] 张静, 张华, 刘恒, 等.微型四旋翼无人机模糊PID控制[J].兵工自动化, 2014, 33(6):58-62.

    ZHANG J, ZHANG H, LIU H, et al.Fuzzy-PID control for macro-quadrotor UAV[J].Ordnance Industry Automation, 2014, 33(6):58-62(in Chinese).
    [13] 韩京清.自抗扰控制器及其应用[J].控制与决策, 1998, 13(1):19-23.

    HAN J Q.Auto-disturbance-rejection controller and its applications[J].Control and Decision, 1998, 13(1):19-23(in Chinese).
    [14] 李毅, 陈增强, 孙明玮, 等.离散型自抗扰控制器在四旋翼飞行姿态控制中的应用[J].控制理论与应用, 2015, 32(11):1470-1477.

    LI Y, CHEN Z Q, SUN M W, et al.Attitude control for quadrotor helicopter based on discrete-time active disturbance rejection control[J].Control Theory & Applications, 2015, 32(11):1470-1477(in Chinese).
    [15] 刘敏, 吉月辉, 李俊芳, 等.四旋翼飞行器自抗扰姿态控制[J].计算机仿真, 2016, 33(3):71-75.

    LIU M, JI Y H, LI J F, et al.Active disturbance rejection attitude control for quadrotor aircraft[J].Computer Simulation, 2016, 33(3):71-75(in Chinese).
    [16] 杨立本, 章卫国, 黄得刚.基于ADRC姿态解耦的四旋翼飞行器鲁棒轨迹跟踪[J].北京航空航天大学学报, 2015, 41(6):1026-1033.

    YANG L B, ZHANG W G, HUANG D G.Robust trajectory tracking for quadrotor aircraft based on ADRC attitude decoupling control[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6):1026-1033(in Chinese).
    [17] 李杰, 齐晓慧, 夏元清, 等.线性/非线性自抗扰切换控制方法研究[J].自动化学报, 2016, 42(2):202-212.

    LI J, QI X H, XIA Y Q, et al.On linear/nonlinear active disturbance rejection switching control[J].Acta Automation Sinica, 2016, 42(2):202-212(in Chinese).
    [18] LI J, XIA Y, QI X, et al.On the necessity, scheme, and basis of the linear-nonlinear switching in active disturbance rejection control[J].IEEE Transactions on Industrial Electronics, 2017, 64(2):1425-1435.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  794
  • HTML全文浏览量:  125
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-09
  • 录用日期:  2020-02-14
  • 网络出版日期:  2020-12-20

目录

    /

    返回文章
    返回
    常见问答