留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高强度弹性合金的微孔铣削实验研究

张璞 黄传真 朱洪涛 王军 姚阳 姚鹏

张璞, 黄传真, 朱洪涛, 等 . 高强度弹性合金的微孔铣削实验研究[J]. 北京航空航天大学学报, 2021, 47(1): 132-139. doi: 10.13700/j.bh.1001-5965.2019.0650
引用本文: 张璞, 黄传真, 朱洪涛, 等 . 高强度弹性合金的微孔铣削实验研究[J]. 北京航空航天大学学报, 2021, 47(1): 132-139. doi: 10.13700/j.bh.1001-5965.2019.0650
ZHANG Pu, HUANG Chuanzhen, ZHU Hongtao, et al. Experimental investigation on micro milling holes of high-strength elastic alloy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 132-139. doi: 10.13700/j.bh.1001-5965.2019.0650(in Chinese)
Citation: ZHANG Pu, HUANG Chuanzhen, ZHU Hongtao, et al. Experimental investigation on micro milling holes of high-strength elastic alloy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 132-139. doi: 10.13700/j.bh.1001-5965.2019.0650(in Chinese)

高强度弹性合金的微孔铣削实验研究

doi: 10.13700/j.bh.1001-5965.2019.0650
基金项目: 

国家自然科学基金 51375276

国家自然科学基金 51675312

详细信息
    作者简介:

    张璞  男, 博士研究生。主要研究方向:微细切削加工技术

    黄传真  男, 博士, 教授, 博士生导师。主要研究方向:高效精密加工技术、结构陶瓷材料研制及应用、新材料加工技术

    朱洪涛  男, 博士, 教授, 博士生导师。主要研究方向:磨料射流精密加工及其仿真技术、微纳刻蚀加工技术、微细切削加工技术

    通讯作者:

    黄传真, E-mail: chuanzhenh@sdu.edu.cn

  • 中图分类号: TG506.9

Experimental investigation on micro milling holes of high-strength elastic alloy

Funds: 

National Natural Science Foundation of China 51375276

National Natural Science Foundation of China 51675312

  • 摘要:

    使用超高精度加工中心进行了多组铣削3J33B高强度弹性合金微孔的铣削实验,使用Kistler 9119AA2型高精度测力仪测量铣削力,使用Keyence 3D激光显微镜测量已加工孔的尺寸,使用扫描电子显微镜(SEM)和能谱仪(EDS)测量刀具磨损。实验结果表明,在不同的切削速度条件下,主铣削力的Y方向分力(Y方向力)总是大于X方向分力(X方向力)。在铣削微孔过程中,使用高切削速度进行微细铣削成孔时,已加工孔的孔口直径尺寸误差会增大,严重影响尺寸精度。刀具磨损最严重的区域在刀尖处,并且发生磨损的区域基本集中在整个切削刃的钝圆和接近钝圆的后刀面处。当在低速切削时,磨粒磨损是刀具的主要磨损形式,然而,随着切削速度的提高,氧化磨损所占比例逐渐增大。已加工表面的弹性回复加剧了后刀面磨损,并影响切削稳定性。

     

  • 图 1  实验用微型铣刀的SEM图

    Figure 1.  SEM illustration of micro milling cutter used in this experiment

    图 2  铣孔实验装置

    Figure 2.  Experimental setup for milling holes

    图 3  微孔的铣削过程示意图

    Figure 3.  Schematic diagram of process for milling a micro hole

    图 4  工件示意图

    Figure 4.  Schematic diagram of workpiece

    图 5  微孔的铣削力

    Figure 5.  Milling forces for micro milling holes

    图 6  第5个已加工孔的孔口直径测量图

    Figure 6.  Schematic diagram for measurement of orifice diameter of the fifth machined hole

    图 7  已加工孔的孔口直径散点图

    Figure 7.  Scatter diagram for machined hole's orifice diameters

    图 8  磨损刀具的SEM图和EDS图谱

    Figure 8.  SEM illustration and EDS spectra of worn cutting edges

    图 9  不同切削速度下刀具的应力云图

    Figure 9.  Stress contours of cutting tools at different cutting speeds

    图 10  切削刃钝圆和后刀面的磨损机理示意简图

    Figure 10.  Schematic diagram for wear mechanism of cutting edge roundness and flank

    表  1  3J33B弹性合金的化学组成

    Table  1.   Chemical composition of elastic alloy 3J33B

    元素 质量分数/%
    C 0.008
    Si 0.10
    Mn ≤0.10
    P 0.005
    S 0.005
    Ni 17.50~19.00
    Co 1.50~8.50
    Mo 4.60~5.20
    Ti 0.35~0.50
    Al 0.05~0.15
    Fe 65
    下载: 导出CSV

    表  2  3J33B弹性合金的基本力学性能

    Table  2.   Main mechanical properties of elastic alloy 3J33B

    参数 数值
    抗拉强度/MPa ≥1 800
    屈服强度/MPa ≥1 720
    弹性模量/GPa 188
    延伸率/% ≥8
    硬度/HRC 30
    下载: 导出CSV

    表  3  铣削所用加工参数

    Table  3.   Cutting conditions used in milling

    参数 实验号
    1 2 3 4 5
    n/(r·min-1) 3 000 6 000 12 000 24 000 48 000
    v/(m·min-1) 9.42 18.84 37.68 75.36 150.72
    vfp/(mm·min-1) 12
    vfa/(mm·min-1) 15
    lr/mm 0.01
    la/mm 0.1
    下载: 导出CSV

    表  4  已加工孔的孔口直径测量值

    Table  4.   Measured orifice diameters of machined holes

    v/(m·min-1) 孔口直径/mm
    No.1 No.2 No.3 No.4 No.5
    9.42 1.613 1.612 1.611 1.610 1.608
    18.84 1.610 1.609 1.607 1.606 1.604
    37.68 1.612 1.609 1.608 1.607 1.605
    75.36 1.611 1.608 1.607 1.605 1.604
    150.72 1.630 1.626 1.625 1.623 1.622
    下载: 导出CSV
  • [1] CHAE J, PAEK S S, FREIHEIT T.Investigation of micro-cutting operations[J].International Journal of Machine Tools and Manufacture, 2006, 46(3-4):313-332. doi: 10.1016/j.ijmachtools.2005.05.015
    [2] DOENFELD D, MIN S, TAKEUCHI Y.Recent advances in mechanical micromachining[J].CIRP Annals-Manufacturing Technology, 2006, 55(2):745-768. doi: 10.1016/j.cirp.2006.10.006
    [3] GRZESIK W.Advanced machining processes of metallic materials[M].Amsterdam:Elsevier, 2008:301-302.
    [4] ARAMCHAROEN A, MATIVENGA P T.Size effect and tool geometry in micromilling of tool steel[J].Precision Engineering, 2009, 33(4):402-407. doi: 10.1016/j.precisioneng.2008.11.002
    [5] AFAZOV S M, RATCHEV S M, SEGAL J.Modelling and simulation of micro-milling cutting forces[J].Journal of Materials Processing Technology, 2010, 210(15):2154-2162. doi: 10.1016/j.jmatprotec.2010.07.033
    [6] AFAZOV S M, ZDEBSKI D, RATCHEV S M, et al.Effects of micro-milling conditions on the cutting forces and process stability[J].Journal of Materials Processing Technology, 2013, 213(5):671-684. doi: 10.1016/j.jmatprotec.2012.12.001
    [7] TANSEL I N, ARKAN T T, BAO W Y, et al.Tool wear estimation in micro-machining.Part Ⅰ:Tool usage-cutting force relationship[J].International Journal of Machine Tools and Manufacture, 2000, 40(4):599-608. doi: 10.1016/S0890-6955(99)00073-5
    [8] LIU K, LI X P, RAHMAN M.Characteristics of high speed micro-cutting of tungsten carbide[J].Journal of Materials Processing Technology, 2003, 140(1-3):352-357. doi: 10.1016/S0924-0136(03)00758-1
    [9] WANG W, KWEON S H, YANG S H.A study on roughness of the micro-end-milled surface produced by a miniatured machine tool[J].Journal of Materials Processing Technology, 2005, 162-163:702-708. doi: 10.1016/j.jmatprotec.2005.02.141
    [10] LEKKALA R, BAJPAI V, SINGH R K, et al.Characterization and modeling of burr formation in micro-end milling[J].Precision Engineering, 2011, 35(4):625-637. doi: 10.1016/j.precisioneng.2011.04.007
    [11] THEPSONTHI T, OZEL T.Multi-objective process optimization for micro-end milling of Ti-6Al-4V titanium alloy[J].International Journal of Advanced Manufacturing Technology, 2012, 63(9-12):903-914. doi: 10.1007/s00170-012-3980-z
    [12] WU X, LI L, HE N.Investigation on the burr formation mechanism in micro cutting[J].Precision Engineering, 2017, 47:191-196. doi: 10.1016/j.precisioneng.2016.08.004
    [13] RAMULU M, BRANSON T, KIM D.A study on the drilling of composite and titanium stacks[J].Composite Structures, 2001, 54(1):67-77. doi: 10.1016/S0263-8223(01)00071-X
    [14] BIERMANN D, KAHLEYSS F, KREBS E, et al.A study on micro-machining technology for the machining of NiTi:Five-axis micro-milling and micro deep-hole drilling[J].Journal of Materials Engineering and Performance, 2011, 20(4-5):745-751. doi: 10.1007/s11665-010-9796-9
    [15] YAN H B, FENG S S, LU T J, et al.Experimental and numerical study of turbulent flow and enhanced heat transfer by cross-drilled holes in a pin-finned brake disc[J].International Journal of Thermal Science, 2017, 118:355-366. doi: 10.1016/j.ijthermalsci.2017.04.024
    [16] ZHAO W S, WANG Z L, DI S C, et al.Ultrasonic and electric discharge machining to deep and small hole on titanium alloy[J].Journal of Materials Processing Technology, 2002, 120(1-3):101-106. doi: 10.1016/S0924-0136(01)01149-9
    [17] TUNNA L, ONEILL W, KHAN A, et al.Analysis of laser micro drilled holes through aluminium for micro-manufacturing applications[J].Optics and Lasers in Engineering, 2005, 43(9):937-950. doi: 10.1016/j.optlaseng.2004.11.001
    [18] KOWSARI K, SOOKHAKLARI M R, NOURAEI H, et al.Hybrid erosive jet micro-milling of sintered ceramic wafers with and without copper-filled through-holes[J].Journal of Materials Processing Technology, 2016, 230:198-210. doi: 10.1016/j.jmatprotec.2015.11.027
    [19] ISLAM M M, LI C P, WON S J, et al.A deburring strategy in drilled hole of CFRP composites using EDM process[J].Journal of Alloys and Compounds, 2017, 703:477-485. doi: 10.1016/j.jallcom.2017.02.001
    [20] IYER R, KOSHY P, NG E.Helical milling:An enabling technology for hard machining precision holes in AISI D2 tool steel[J].International Journal of Machine Tools and Manufacture, 2007, 47(2):205-210. doi: 10.1016/j.ijmachtools.2006.04.006
    [21] REY P A, LEDREF J, SENATORE J, et al.Modelling of cutting forces in orbital drilling of titanium alloy Ti-6Al-4V[J].International Journal of Machine Tools and Manufacture, 2016, 106:75-88. doi: 10.1016/j.ijmachtools.2016.04.006
    [22] YAN M F, WU Y Q, WANG Y, et al.Nanocrystallization of alloy 3J33 by a complex thermomechanical treatment process[J].Materials Science and Engineering A, 2009, 509(1-2):41-45. doi: 10.1016/j.msea.2009.01.004
    [23] RODRIGUEZ P, LABARGA J E.A new model for the prediction of cutting forces in micro-end-milling operations[J].Journal of Materials Processing Technology, 2013, 213(2):261-268. doi: 10.1016/j.jmatprotec.2012.09.009
    [24] JARDRET V, ZAHOUANI H, LOUBET J L, et al.Understanding and quantification of elastic and plastic deformation during a scratch test[J].Wear, 1998, 218(1):8-14. doi: 10.1016/S0043-1648(98)00200-2
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  369
  • HTML全文浏览量:  100
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-29
  • 录用日期:  2020-03-13
  • 网络出版日期:  2021-01-20

目录

    /

    返回文章
    返回
    常见问答