[1] 徐竟泽,吴作宏,徐岩,等.融合PCA、LDA和SVM算法的人脸识别[J].计算机工程与应用,2019,55(18):34-37.XU J Z,WU Z H,XU Y,et al.Face recognition combined with PCA,LDA and SVM algorithms[J].Computer Engineering and Applications,2019,55(18):34-37(in Chinese). [2] 任飞凯,邱晓晖.基于LBP和数据扩充的CNN人脸识别研究[J].计算机技术与发展,2020,30(3):62-66.REN F K,QIU X H.Research on CNN face recognition based on LBP and data augmentation[J].Computer Technology and Development,2020,30(3):62-66(in Chinese). [3] SUN Y,WANG X G,TANG X O.Deep learning face representation from predicting 10,000 classes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE Press,2014:1891-1898. [4] SUN Y,WANG X G,TANG X O,et al.Deep learning face representation by joint identification-verification[C]//Advances in Neural Information Processing Systems,2014:1988-1996. [5] SUN Y,WANG X G,TANG X O.Deeply learned face representations are sparse,selective,and robust[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE Press,2015:2892-2900. [6] SCHROFF F,KALENICHENKO D,PHILBIN J.FaceNet:A unified embedding for face recognition and clustering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE Press,2015:815-823. [7] WANG S S,CHEN Y.A joint loss function for deep face recognition[J].Multidimensional Systems and Signal Processing,2019,30(3):1517-1530. [8] DENG J,GUO J K,XUE N N,et al.Arcface:Additive angular margin loss for deep face recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE Press,2019:4690-4699. [9] ZHANG X,ZHAO R,QIAO Y,et al.AdaCos:Adaptively scaling cosine logits for effectively learning deep face representations[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE Press,2019:10823-10832. [10] CHEN S,LIU Y,GAO X,et al.MobileFaceNets:Efficient CNNs for accurate real-time face verification on mobile devices[C]//Chinese Conference on Biometric Recognition.Berlin:Springer,2018:428-438. [11] HOWARD A G,ZHU M,CHEN B,et al.MobileNets:Efficient convolutional neural networks for mobile vision applications[EB/OL].(2017-04-17)[2020-02-20].https://arxiv.org/abs/1704.04861. [12] SANDLER M,HOWARD A,ZHU M L,et al.MobileNetV2:Inverted residuals and linear bottlenecks[EB/OL].(2018-01-13)[2019-03-21].https://arxiv.org/abs/1801.04381. [13] LEE H J,KIM H E,NAM H.SRM:A style-based recalibration module for convolutional neural networks[EB/OL].(2019-05-26)[2020-02-20].https://arxiv.org/abs/1903.10829?context=cs. [14] IOFFE S,SZEGEDY C.Batch normalization:Accelerating deep network training by reducing internal covariate shift[EB/OL].(2015-03-02)[2020-02-20].http://arxiv.org/abs/1502.03167. [15] CHU X X,ZHANG B,XU R J.MoGA:Searching beyond MobileNetV3[EB/OL].(2019-08-04)[2020-02-20].https://arxiv.org/abs/1908.01314v2. [16] HU J,SHEN L,ALBANIE S,et al.Squeeze-and-excitation networks[J].(2017-09-05)[2020-02-20].https://arxiv.org/abs/1709.01507. [17] 常思远,李有乘,孙培岩,等.一种基于MTCNN的视频人脸检测及识别方法[J].许昌学院学报,2019,38(2):154-157.CHANG S Y,LI Y S,SUN P Y,et al.A video face detection and recognition method based on MTCNN[J].Journal of Xuchang University,2019,38(2):154-157(in Chinese). |