[1] 张灿,林旭斌,刘都群,等.2019年国外高超声速飞行器技术发展综述[J].飞航导弹,2020(1):16-20.ZHANG C,LIN X B,LIU D Q,et al.Review of the development of hypersonic vehicle technology in 2019[J].Aerodynamic Missile Journal,2020(1):16-20(in Chinese). [2] 林旭斌,李彦,胡冬冬.美军2019财年高超声速科研预算简析[J].飞航导弹,2018(6):1-3.LIN X B,LI Y,HU D D.Analysis on the budget of hypersonic scientific research of the US military in 2019[J].Aerodynamic Missile Journal,2018(6):1-3(in Chinese). [3] LI G H,ZHANG H B,TANG G J.Maneuver characteristics analysis for hypersonic glide vehicles[J].Aerospace Science and Technology,2015,43:321-328. [4] ZARCHAN P.Tactical and strategic missile guidance[M].Reston:AIAA,2012. [5] QIN L,LI J L,ZHOU D.Tracking filter and prediction for non-ballistic target HTV-2 in near space[C]//27th Chinese Control and Decision Conference.Piscataway:IEEE Press,2015:3556-3561. [6] KIM K,HWANG I.Intent-based detection and characterization of aircraft maneuvers in en route airspace[J].Journal of Aerospace Information Systems,2018,15(2):72-91. [7] 张洪波,黄景帅,李广华,等.典型控制规律滑翔飞行器的轨迹预测方法[J].现代防御技术,2017,45(4):112-118.ZHANG H B,HUANG J S,LI G H,et al.Trajectory prediction of glide vehicle based on typical control law[J].Modern Defence Technology,2017,45(4):112-118(in Chinese). [8] VAPNIK N.The nature of statistical learning theory[M].Berlin:Springer,1995. [9] BERNHARD S.Advances in kernel methods:Support vector learning[M].Cambridge:MIT Press,1999. [10] 于震梁,孙志礼,曹汝男,等.基于支持向量机和卡尔曼滤波的机械零件剩余寿命预测模型研究[J].兵工学报,2018,39(5):991-997.YU Z L,SUN Z L,CAO R N,et al.Research on remaining useful life predictive model of machine parts based on SVM and Kalman filter[J].Acta Armamentarii,2018,39(5):991-997(in Chinese). [11] 陈旭梅,龚辉波,王景楠.基于SVM和Kalman滤波的BRT行程时间预测模型研究[J].交通运输系统工程与信息,2012,12(4):29-34.CHEN X M,GONG H B,WANG J N.BRT vehicle travel time prediction based on SVM and Kalman filter[J].Journal of Transportation Systems Engineering and Information Technology,2012,12(4):29-34(in Chinese). [12] 杨茂,黄宾阳,江博,等.基于卡尔曼滤波和支持向量机的风电功率实时预测研究[J].东北电力大学学报,2017,37(2):45-51.YANG M,HUANG B Y,JIANG B,et al.Real-time prediction for wind power based on Kalman filter and support vector machines[J].Journal of Northeast Electric Power University,2017,37(2):45-51(in Chinese). [13] PENG H,BAI X L.Exploring capability of support vector machine for improving satellite orbit prediction accuracy[J].Journal of Aerospace Information Systems,2018,15(6):366-381. [14] VINH N X.Optimal trajectories in atmospheric flight[M].London:Pergamon Press Ltd.,1982:449-468. [15] 赵汉元.飞行器再入动力学与制导[M].长沙:国防科技大学出版社,1997.ZHAO H Y.Reentry dynamics and guidance of aircraft[M].Changsha:University of National Defense Science and Technology Press,1997(in Chinese). [16] LI G H,ZHANG H B,TANG G J,et al.Maneuver modes analysis for hypersonic glide vehicles[C]//Proceedings of 2014 IEEE Chinese Guidance,Navigation and Control Conference.Piscataway:IEEE Press,2014:543-548. [17] ZHU J W,LIU L H,TANG G J,et al.Highly constrained optimal gliding guidance[J].Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2015,229(12):2321-2335. [18] 李凡,熊家军,张凯,等.临近空间高超声速目标跟踪动力学模型[J].宇航学报,2019,40(3):266-276.LI F,XIONG J J,ZHANG K,et al.Near space hypersonic target dynamics tracking model[J].Journal of Astronautics,2019,40(3):266-276(in Chinese). [19] 谢愈,刘鲁华,汤国建,等.高超声速滑翔飞行器摆动式机动突防弹道设计[J].航空学报,2011,32(12):2174-2181.XIE Y,LIU L H,TANG G J,et al.Weaving maneuver trajectory design for hypersonic glide vehicle[J].Acta Aeronautica et Astronautica Sinica,2011,32(12):2174-2181(in Chinese). [20] 王丹.基于运动行为识别的高超声速目标弹道估计[D].哈尔滨:哈尔滨工业大学,2017.WANG D.Trajectory estimation of hypersonic target based on motion behavior recognition[D].Harbin:Harbin Institute of Technology,2017(in Chinese). [21] HOUGH M E.Reentry maneuver estimation using nonlinear Markov acceleration models[J].Journal of Guidance,Control,and Dynamics,2017,40(7):1693-1710. [22] 张凯,熊家军,韩春耀,等.一种基于气动力模型的高超声速滑翔目标跟踪算法[J].宇航学报,2017,38(2):123-130.ZHANG K,XIONG J J,HAN C Y,et al.A tracking algorithm of hypersonic glide reentry vehicle via aerodynamic model[J].Journal of Astronautics,2017,38(2):123-130(in Chinese). [23] SINGER R A.Estimating optimal tracking filter performance for manned maneuvering targets[J].IEEE Transactions on Aerospace and Electronic Systems,1970,AES-6(4):473-483. [24] ZHU J W,HE R Z,TANG G J,et al.Pendulum maneuvering strategy for hypersonic glide vehicles[J].Aerospace Science and Technology,2018,78:62-70. [25] HOU Q L,ZHANG J X,LIU L M,et al.Discriminative information-based nonparallel support vector machine[J].Signal Processing,2019,162:169-179. [26] CHANG M,LIN C.Leave-one-out bounds for support vector regression model selection[J].Neural Computation,2005,17(5):1188-1222. [27] CHANG C,LIN C.LIBSVM:A library for support vector machines[J].ACM Transactions on Intelligent Systems and Technology,2011,2(3):1-27. [28] KJELDSEN H T.A contextualized historical analysis of the Kuhn-Tucker theorem in nonlinear programming:The impact of World War Ⅱ[J].Historia Mathematica,2000,27(4):331-361. [29] CHEN K L,YU J.Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach[J].Applied Energy,2014,113:690-705. [30] 张强,肖刚,蓝屹群.基于BP神经网络多类分类的湍流目标探测[J].系统工程与电子技术,2018,40(7):1486-1490.ZHANG Q,XIAO G,LAN Y Q.Turbulence target detection based on BP neural network multi-level classification[J].Systems Engineering and Elctronics,2018,40(7):1486-1490(in Chinese). [31] 何伟.基于朴素贝叶斯的文本分类算法研究[D].南京:南京邮电大学,2018.HE W.Text classification algorithm research based on naive Bayes[D].Nanjing:Nanjing University of Posts and Telecommunications,2018(in Chinese). |