[1] BU S H,WANG L,HAN P C,et al.3D shape recognition and retrieval based on multi-modality deep learning[J].Neurocomputing,2017,259:183-193. [2] 蔡轶珩,王雪艳,胡绍斌,等.基于多源图像弱监督学习的3D人体姿态估计[J].北京航空航天大学学报,2019,45(12):2375-2384.CAI Y H,WANG X Y,HU S B,et al.Three-dimensional human pose estimation based on multi-source image weakly-supervised learning[J].Journal of Beijing University of Aeronautics and Astronautics,2019,45(12):2375-2384(in Chinese). [3] GIRDHAR R,FOUHEY D F,RODRIGUEZ M,et al.Learning a predictable and generative vector representation for objects[C]//European Conference on Computer Vision.Berlin:Springer,2016:484-499. [4] TULSIANI S,GUPTA S,FOUHEY D F,et al.Factoring shape,pose,and layout from the 2d image of a 3d scene[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE Press,2018:302-310. [5] IYER N,JAYANTI S,LOU K,et al.Three-dimensional shape searching:State-of-the-art review and future trends[J].Computer-Aided Design,2005,37(5):509-530. [6] XIE J,FANG Y,ZHU F,et al.Deepshape:Deep learned shape descriptor for 3d shape matching and retrieval[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE Press,2015:1275-1283. [7] MIAN A S,BENNAMOUN M,OWENS R A.Matching tensors for pose invariant automatic 3D face recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE Press,2005:120. [8] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems.Cambridge:MIT Press,2012:1097-1105. [9] 杨思晨,王华锋,王月海,等.深度学习机制与小波融合的超分辨率重建算法[J].北京航空航天大学学报,2020,46(1):189-197.YANG S C,WANG H F,WANG Y H,et al.Super-resolution reconstructing algorithm based on deep learning mechanism and wavelet fusion[J].Journal of Beijing University of Aeronautics and Astronautics,2020,46(1):189-197(in Chinese). [10] GRABNER A,ROTH P M,LEPETIT V.Location field descriptors:Single image 3D model retrieval in the wild[C]//Proceedings of the 2019 International Conference on 3D Vision (3DV).Piscataway:IEEE Press,2019:583-593. [11] WU Z Z,ZHANG Y H,ZENG M,et al.Joint analysis of shapes and images via deep domain adaptation[J].Computers & Graphics,2018,70:140-147. [12] WOO S,PARK J,LEE J Y,et al.CBAM:Convolutional block attention module[C]//European Conference on Computer Vision.Berlin:Springer,2018:3-19. [13] CHO K,VAN MERRIËNBOER B,GULCEHRE C,et al.Learning phrase representations using RNN encoder-decoder for statistical machine translation[EB/OL].(2014-06-03)[2020-02-25].https://arxiv.org/abs/1406.1078. [14] LEE T,LIN Y L,CHIANG H Y,et al.Cross-domain image-based 3D shape retrieval by view sequence learning[C]//Proceedings of the 2018 International Conference on 3D Vision (3DV).Piscataway:IEEE Press,2018:258-266. [15] LI W,LIU A,NIE W Z,et al.SHREC 2019-Monocular image based 3D model retrieval[EB/OL].(2019-01-28)[2020-02-25].https://www.iti-tju.org/MI3DOR19/. [16] FANG Y,XIE J,DAI G,et al.3D deep shape descriptor[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE Press,2015:2319-2328. [17] 李海生,武玉娟,郑艳萍,等.基于深度学习的三维数据分析理解方法研究综述[J/OL].计算机学报,2019,42:1-25.(2019-07-09)[2020-02-21].http://kns.cnki.net/kcms/detail/11.1826.TP.20190709.1509.002.html.LI H S,WU Y J,ZHENG Y P,et al.A survey of 3D data analysis and understanding based on deep learning[J/OL].Chinese Journal of Computers,2019,42:1-25.(2019-07-09)[2020-02-21].http://kns.cnki.net/kcms/detail/11.1826.TP.20190709.1509.002.html(in Chinese). [18] OSADA R,FUNKHOUSER T,CHAZELLE B,et al.Shape distributions[J].ACM Transactions on Graphics (TOG),2002,21(4):807-832. [19] MAHMOUDI M,SAPIRO G.Three-dimensional point cloud recognition via distributions of geometric distances[J].Graphical Models,2009,71(1):22-31. [20] SUN J,OVSJANIKOV M,GUIBAS L.A concise and provably informative multi-scale signature based on heat diffusion[J].Computer Graphics Forum,2009,28(5):1383-1392. [21] AUBRY M,SCHLICKEWEI U,CREMERS D.The wave kernel signature:A quantum mechanical approach to shape analysis[C]//Proceedings of 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).Piscataway:IEEE Press,2011:1626-1633. [22] WANG P S,SUN C Y,LIU Y,et al.Adaptive O-CNN:A patch-based deep representation of 3D shapes[J].ACM Transactions on Graphics (TOG),2018,37(6):1-11. [23] FENG Y,FENG Y,YOU H,et al.MeshNet:Mesh neural network for 3D shape representation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Palo Alto:AAAI Press,2019,33:8279-8286. [24] QI C R,YI L,SU H,et al.Pointnet++:Deep hierarchical feature learning on point sets in a metric space[C]//Advances in Neural Information Processing Systems.Cambridge:MIT Press,2017:5099-5108. [25] HUANG H B,KALOGERAKIS E,CHAUDHURI S,et al.Learning local shape descriptors from part correspondences with multiview convolutional networks[J].ACM Transactions on Graphics (TOG),2017,37(1):1-14. [26] WANG P S,LIU Y,GUO Y X,et al.O-CNN:Octree-based convolutional neural networks for 3d shape analysis[J].ACM Transactions on Graphics (TOG),2017,36(4):1-11. [27] HAN Z,SHANG M,LIU Z,et al.SeqViews2SeqLabels:Learning 3D global features via aggregating sequential views by RNN with attention[J].IEEE Transactions on Image Processing,2018,28(2):658-672. [28] LAN S Y,YU R C,YU G,et al.Modeling local geometric structure of 3D point clouds using Geo-CNN[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE Press,2019:998-1008. [29] SU H,MAJI S,KALOGERAKIS E,et al.Multi-view convolutional neural networks for 3d shape recognition[C]//Proceedings of the IEEE International Conference on Computer Vision.Piscataway:IEEE Press,2015:945-953. [30] FENG Y,ZHANG Z,ZHAO X,et al.GVCNN:Group-view convolutional neural networks for 3D shape recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE Press,2018:264-272. [31] JIANG J,BAO D,CHEN Z,et al.MLVCNN:Multi-loop-view convolutional neural network for 3D shape retrieval[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Palo Alto:AAAI Press,2019,33:8513-8520. [32] TASSE F P,DODGSON N.Shape2Vec:Semantic-based descriptors for 3D shapes,sketches and images[J].ACM Transactions on Graphics (TOG),2016,35(6):1-12. [33] AUBRY M,MATURANA D,EFROS A A,et al.Seeing 3d chairs:Exemplar part-based 2d-3d alignment using a large dataset of cad models[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE Press,2014:3762-3769. [34] MOTTAGHI R,XIANG Y,SAVARESE S.A coarse-to-fine model for 3d pose estimation and sub-category recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE Press,2015:418-426. [35] KULIS B.Metric learning:A survey[J].Foundations and Trendsin Machine Learning,2013,5(4):287-364. [36] XIANG Y,KIM W,CHEN W,et al.ObjectNet3D:A large scale database for 3d object recognition[C]//European Conference on Computer Vision.Berlin:Springer,2016:160-176. [37] WANG F,KANG L,LI Y.Sketch-based 3d shape retrieval using convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE Press,2015:1875-1883. [38] LI Y Y,SU H,QI C R,et al.Joint embeddings of shapes and images via CNN image purification[J].ACM Transactions on Graphics (TOG),2015,34(6):1-12. [39] DAI G,XIE J,ZHU F,et al.Deep correlated metric learning for sketch-based 3d shape retrieval[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Palo Alto:AAAI Press,2017:4002-4008. [40] DAI G X,XIE J,FANG Y.Deep correlated holistic metric learning for sketch-based 3d shape retrieval[J].IEEE Transactions on Image Processing,2018,27(7):3374-3386. [41] SCHROFF F,KALENICHENKO D,PHILBIN J.FaceNet:Aunified embedding for face recognition and clustering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE Press,2015:815-823. [42] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].(2014-09-04)[2020-02-25].https://arxiv.org/abs/1409.1556. |