北京航空航天大学学报 ›› 2020, Vol. 46 ›› Issue (9): 1711-1720.doi: 10.13700/j.bh.1001-5965.2020.0064

• 论文 • 上一篇    下一篇

基于收缩场学习的Retinex低照度图像增强

吴庆波1,2, 王蕊1,2, 任文琦1,2   

  1. 1. 中国科学院信息工程研究所 信息安全国家重点实验室, 北京 100193;
    2. 中国科学院大学 网络空间安全学院, 北京 100049
  • 收稿日期:2020-03-02 发布日期:2020-09-22
  • 通讯作者: 任文琦 E-mail:renwenqi@iie.ac.cn
  • 作者简介:吴庆波 男,博士研究生。主要研究方向:图像处理;王蕊 女,博士,研究员,博士生导师。主要研究方向:多媒体信息智能化处理、计算机视觉等;任文琦 男,博士,副研究员。主要研究方向:图像处理和机器学习。
  • 基金资助:
    国家自然科学基金(U1605252,U1803264,61802403);国家重点研发计划(2019YFB1406500);北京市自然科学基金(L182057,KZ201910005007,L182057)

Learning shrinkage fields for low-light image enhancement via Retinex

WU Qingbo1,2, WANG Rui1,2, REN Wenqi1,2   

  1. 1. State Key Laboratory of Information Security, Institute of Information Engineering, CAS, Beijing 100193, China;
    2. School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-03-02 Published:2020-09-22
  • Supported by:
    National Natural Science Foundation of China (U1605252,U1803264,61802403); National Key R & D Program of China (2019YFB1406500); Beijing Natural Science Foundation (L182057,KZ201910005007,L182057)

摘要: 为增强低照度图像和抑制噪声,提出了一种通过学习收缩场(SF)改进Retinex分解的图像增强方法。首先,构造新的目标函数,在正则项中引入2组不同的高阶滤波器分别约束未知的反射图和照明图。高阶滤波器可以学习到多种激活模式,有利于在恢复反射图的同时抑制噪声污染。然后,在优化目标函数时通过求解收缩场更新隐变量,参数化的压缩函数可以自适应地调整相应滤波器在反射图和照明图上的响应。最后,在每个级联内更新照明图之前,嵌入一个辅助的收缩场,以抑制噪声和不良伪影的传播,从而更精确地估计照明图。实验结果表明,所提方法取得的峰值信噪比(PSNR)和结构相似性(SSIM)均高于当前最新的低照度图像增强方法。

关键词: 低照度图像, Retinex模型, 图像增强, 图像去噪, 收缩场(SF)模型

Abstract: To enhance a low-light image and mitigate noises simultaneously, we propose an image enhancement algorithm by learning Shrinkage Field (SF) to improve the reflectance image and the illumination map in Retinex model. To this end, first, we design a novel objective function by constraining the latent reflectance image and the illumination map with two different groups of high-order filters in regularization terms. These filters can be learnt to possess various activation patterns and thus facilitate recovering the reflectance image and suppressing noises at the same time. Then, we update the latent variables in the objective function optimization by calculating SFs, where the parameterized shrinkage functions are capable to scale the responses of the corresponding high-order filters convolving the reflectance image and the illumination map. Finally, we embed an auxiliary SF model before the update of the illumination map in each cascade to suppress the propagation of noises and undesirable artifacts and further to refine the estimation of illumination map. Experimental results demonstrate that the proposed algorithm outperforms the state-of-the-art low-light image enhancement methods in terms of Peak Signal to Noise Ratio(PSNR) and Structural Similarity (SSIM).

Key words: low-light image, Retinex model, image enhancement, image denoising, model of Shrinkage Field(SF)

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发