留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料飞机接地回流网络建模与阻抗分析

刘建英 隋政 张起浩 杨占刚

刘建英, 隋政, 张起浩, 等 . 复合材料飞机接地回流网络建模与阻抗分析[J]. 北京航空航天大学学报, 2021, 47(5): 885-893. doi: 10.13700/j.bh.1001-5965.2020.0083
引用本文: 刘建英, 隋政, 张起浩, 等 . 复合材料飞机接地回流网络建模与阻抗分析[J]. 北京航空航天大学学报, 2021, 47(5): 885-893. doi: 10.13700/j.bh.1001-5965.2020.0083
LIU Jianying, SUI Zheng, ZHANG Qihao, et al. Modeling and impedance analysis of composite material aircraft grounded return network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 885-893. doi: 10.13700/j.bh.1001-5965.2020.0083(in Chinese)
Citation: LIU Jianying, SUI Zheng, ZHANG Qihao, et al. Modeling and impedance analysis of composite material aircraft grounded return network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 885-893. doi: 10.13700/j.bh.1001-5965.2020.0083(in Chinese)

复合材料飞机接地回流网络建模与阻抗分析

doi: 10.13700/j.bh.1001-5965.2020.0083
基金项目: 

航空科学基金 20170267002

中央高校基本科研业务费专项资金 3122018D005

天津市高等学校创新团队培养计划 TD13-5071

详细信息
    作者简介:

    刘建英  女,硕士,副教授,硕士生导师。主要研究方向:多电 飞机电力系统。

    杨占刚  男,博士,副教授,硕士生导师。主要研究方向:多电 飞机电力系统。

    通讯作者:

    杨占刚, E-mail:yangcauc@163.com

  • 中图分类号: V242.2;TB553

Modeling and impedance analysis of composite material aircraft grounded return network

Funds: 

Aeronautical Science Foundation of China 20170267002

the Fundamental Research Funds of the Central Universities 3122018D005

Funding for the University Innovation Team Training Program of Tianjin TD13-5071

More Information
  • 摘要:

    为保证飞行安全,复合材料飞机需增设金属电流回流网络来满足机上电气系统的接地需求。针对复合材料与金属电流回流网络搭接的阻抗计算问题,采用一种基于导体和电介质的部分元等效电路(PEEC)法,对包括金属导轨和复合材料蒙皮的接地回流网络进行了建模,计算接地回流网络在不同参数、结构下的阻抗,实现任意节点之间的阻抗计算,并分析了不同频率下接地回流网络中构件部分参数对阻抗值的影响及不同类别接地点间阻抗值的差异。仿真计算实例验证了所提方法的适用性及计算结果的正确性,可为复合材料飞机接地回流网络在故障管理及电气保护系统设计等方面提供参考。

     

  • 图 1  复合材料蒙皮与金属接地回流网络搭接模型

    Figure 1.  Overlap model of composite material skin and metal grounded return network

    图 2  经过网格划分后的2个相邻导体单元示意图

    Figure 2.  Schematic diagram of two adjacent conductorelements after meshing

    图 3  两个相邻导体单元的PEEC等效电路

    Figure 3.  PEEC equivalent circuit of two adjacent conductor units

    图 4  两个相邻电介质单元的PEEC等效电路

    Figure 4.  PEEC equivalent circuit of two adjacent dielectric units

    图 5  金属导轨截面形状及尺寸

    Figure 5.  Cross-sectional shape and size of metal bar

    图 6  三种方法计算结果对比

    Figure 6.  Comparison of calculation results among three methods

    图 7  金属导轨阻抗计算结果

    Figure 7.  Calculation results of metal bar impedance

    图 8  搭接复合材料蒙皮前后阻抗计算结果

    Figure 8.  Impedance calculation results of overlapped andnon-lapped composite material skin

    图 9  搭接不同电导率的复合材料蒙皮的阻抗计算结果

    Figure 9.  Impedance calculation results of overlapped composite material skin with different conductivity

    图 10  不同截面形状金属导轨的阻抗计算结果

    Figure 10.  Impedance calculation results of different cross-sectional shapes of metal bar

    图 11  复合材料蒙皮与接地回流网络搭接模型

    Figure 11.  Overlap model of composite material skin and grounded return network

    图 12  接地回流网络平面示意图

    Figure 12.  Schematic diagram of grounded return network

    图 13  边界节点与边界节点间的阻抗

    Figure 13.  Impedance between boundary nodes

    图 14  边界节点与内部节点间的阻抗

    Figure 14.  Impedance between boundary node and internal node

    图 15  内部节点与内部节点间的阻抗

    Figure 15.  Impedance between internal nodes

    表  1  材料对应电磁参数

    Table  1.   Electromagnetic parameters of materials

    材料 电导率/(S·m-1) 相对磁导率/(H·m-1)
    3.77×107 1.0
    CFRP 2×104 1.0
    下载: 导出CSV

    表  2  部件外部尺寸

    Table  2.   External dimensions of components

    部件 长/mm 宽/mm 高/mm
    金属导轨 2 000 50 30
    复合材料板 2 000 1 000 4
    下载: 导出CSV

    表  3  仿真项目及相关参数设置

    Table  3.   Simulation project and related parameter setting

    项目名称 金属导轨截面形状 搭接的CFRP电导率/(S·m-1)
    A 工字形
    B 工字形 20 000
    C 工字形 2 000
    D 正方形 20 000
    下载: 导出CSV

    表  4  不同参数设置下的节点间阻抗值

    Table  4.   Impedance between nodes under different parameter settings

    频率/Hz 阻抗/Ω
    A B C D
    0 7.737×10-5 7.426×10-5 7.427×10-5 7.426×10-5
    100 7.773×10-5 7.463×10-5 7.464×10-5 8.037×10-5
    101 1.079×10-4 1.048×10-4 1.048×10-4 1.175×10-4
    102 7.460×10-4 7.325×10-4 7.326×10-4 8.586×10-4
    103 7.157×10-3 7.017×10-3 7.030×10-3 8.191×10-3
    104 7.064×10-2 6.882×10-2 6.930×10-2 7.983×10-2
    105 7.024×10-1 6.841×10-1 6.843×10-1 7.926×10-1
    106 7.015 6.832 6.834 7.913
    下载: 导出CSV
  • [1] 顾轶卓, 李敏, 李艳霞, 等. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8): 2773-2797. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201508025.htm

    GU Y Z, LI M, LI Y X, et al. Progress on manufacturing technology and process theory of aircraft composite structure[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2773-2797(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201508025.htm
    [2] ZHAO D Z, ZHANG M, ZHU M, et al. Review on the electrical resistance/conductivity of carbon fiber reinforced polymer[J]. Applied Sciences, 2019, 9(11): 2390-2414. doi: 10.3390/app9112390
    [3] JONES C, SZTYKIEL M, PENA-ALZOLA R, et al.Grounding topologies for resilient, integrated composite electrical power systems for future aircraft applications[C]//Propulsion and Energy Forum.Reston: AIAA, 2019, 6: 402-416.
    [4] CALADO E A, LEITE M, SILVA A. Selecting composite materials considering cost and environmental impact in the early phases of aircraft structure design[J]. Journal of Cleaner Production, 2018, 186: 113-122. doi: 10.1016/j.jclepro.2018.02.048
    [5] KARCH C, METZNER C.Lightning protection of carbon fibre reinforced plastics-An overview[C]//International Conference on Lightning Protection(ICLP).Piscataway: IEEE Press, 2016, 77: 441-448.
    [6] 刘锐, 张丽. 复合材料飞机电搭接/接地研究[J]. 航空科学技术, 2016(8): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX201608008.htm

    LIU R, ZHANG L. Research on electrical lap/grounding of composite aircraft[J]. Aeronautical Science and Technology, 2016(8): 31-35(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX201608008.htm
    [7] 张宇. 复合材料飞机的电流回路接地技术研究[J]. 航空科学技术, 2011(6): 27-30. doi: 10.3969/j.issn.1007-5453.2011.06.009

    ZHANG Y. Research on current loop grounding technology of composite aircraft[J]. Aeronautical Science and Technology, 2011(6): 27-30(in Chinese). doi: 10.3969/j.issn.1007-5453.2011.06.009
    [8] BANDINELLI M, MORI A, BERCIGLI M, et al.A surface PEEC formulation for the analysis of electrical networks in airplanes[C]//International Symposium on Electromagnetic Compatibility (EMC).Piscataway: IEEE Press, 2013, 11: 694-700.
    [9] JONES C E, NORMAN P J, GALLOWAY S J, et al.Electrical model of carbon fibre reinforced polymers for the development of electrical protection systems for more-electric aircraft[C]//European Conference on Power Electronics and Applications.Karlsruhe: ECCE, 2016, 7: 300-309.
    [10] SAEEDIZADEH N, KERMANI S, RABBANI H. A comparison between the hp-version of finite element method with EIDORS for electrical impedance tomography[J]. Journal of Medical Signals and Sensors, 2011, 1(3): 7-16. doi: 10.4103/2228-7477.95415
    [11] ZHANG X Y, XU G Z, ZHANG S, et al. A numerical computation forward problem model of electrical impedance tomography based on generalized finite element method[J]. IEEE Transactions on Magnetics, 2014, 50(2): 1045-1048. doi: 10.1109/TMAG.2013.2285161
    [12] DU X L, ZOU J, WANG Z X. Calculation of the impedance of a rail track with earth return for the high-speed railway signal circuit using finite-element method[J]. IEEE Transactions on Magnetics, 2015, 51(3): 1-4. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7093470
    [13] HARRINGTON R F, HARRINGTON J L. Field computation by moment methods[M]. Oxford: Oxford University Press, 1966.
    [14] 蒋欣, 王宝发. 阻抗条缩减边缘散射优化模型研究[J]. 航空学报, 2001, 22(S1): 93-97. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB2001S1018.htm

    JIANG X, WANG B F. Study of optimal model of reducing impedance strip edge scattering[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(S1): 93-97(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB2001S1018.htm
    [15] 赵宇. 基于积分方程的互连参数提取方法及其快速算法[D]. 上海: 上海交通大学, 2018: 23-117.

    ZHAO Y.Extraction method of interconnection parameters based on integral equation and its fast algorithm[D].Shanghai: Shanghai Jiao Tong University, 2018: 23-117(in Chinese).
    [16] LI M, FRANCAVILLA M A, VIPIANA F, et al. A doubly hierarchical MoM for high-fidelity modeling of multiscale structures[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(5): 1103-1111. doi: 10.1109/TEMC.2014.2306691
    [17] ARIANOS S, FRANCAVILLA M A, RIGHERO M, et al. Evaluation of the modeling of an EM illumination on an aircraft cable harness[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(4): 844-853. doi: 10.1109/TEMC.2014.2312752
    [18] RUEHLI A E. Inductance calculations in a complex integrated circuit environment[J]. IBM Journal of Research and Development, 1972, 16(5): 470-481. doi: 10.1147/rd.165.0470
    [19] RUEHLI A E, BRENNAN P A. Efficient capacitance calculations for three dimensional multiconductor systems[J]. IEEE Transactions on Microwave Theory and Techniques, 1973, 21(2): 76-82. doi: 10.1109/TMTT.1973.1127927
    [20] RUEHLI A E, HEEB H. Circuit models for three dimensional geometries including dielectrics[J]. IEEE Transactions on Microwave Theory and Techniques, 1974, 22(3): 216-221. doi: 10.1109/TMTT.1974.1128204
    [21] RUEHLI A E. Equivalent circuit models for three dimensional multiconductor systems[J]. IEEE Transactions on Microwave Theory and Techniques, 1992, 40(7): 1507-1516. doi: 10.1109/22.146332
    [22] 丛国瑞. 基于部分元等效电路的电磁建模方法研究[D]. 长沙: 国防科学技术大学, 2011: 17-30.

    CONG G R.Research on electromagnetic modeling method based on partial element equivalent circuit[D].Changsha: National University of Defense Technology, 2011: 17-30(in Chinese).
    [23] 龙海波. 三维全媒质体系的部分元等效电路法及其建模[D]. 北京: 清华大学, 2005: 24-70.

    LONG H B.Partial element equivalent circuit method and modeling of 3D all media system[D].Beijing: Tsinghua University, 2005: 24-70(in Chinese).
    [24] 张筱. 基于等效原理的PEEC建模研究[D]. 北京: 清华大学, 2009: 24-113.

    ZHANG X.Research on PEEC modeling based on equivalent principle[D].Beijing: Tsinghua University, 2009: 24-113(in Chinese).
    [25] TORCHIO R. A volume PEEC formulation based on the cell method for electromagnetic problems from low to high frequency[J]. IEEE Transactions on Antennas and Propagation, 2019, 12(67): 7452-7465. http://ieeexplore.ieee.org/document/8764572/citations
    [26] BANDINELLI M, MORI A, GALGANI G, et al. A surface PEEC formulation for high-fidelity analysis of the current return networks in composite aircrafts[J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(5): 1027-1036. doi: 10.1109/TEMC.2015.2422672
    [27] BANDINELLI M, ANTONINI G, MORI A, et al.Surface PEEC formulation for optimizing electrical network in airplane composite structures[C]//EMC Europe, 2012: 1-29.
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  589
  • HTML全文浏览量:  108
  • PDF下载量:  326
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-05
  • 录用日期:  2020-06-06
  • 网络出版日期:  2021-05-20

目录

    /

    返回文章
    返回
    常见问答