[1] LI G, ZHANG Z, WANG L, et al.One-class collaborative filtering based on rating prediction and ranking prediction[J].Knowledge-Based Systems, 2017, 124:46-54. [2] MARGARIS D, VASILOPOULOS D, VASSILAKIS C, et al.Improving collaborative filtering's rating prediction coverage in sparse datasets through the introduction of virtual near neighbors[C]//201910th International Conference on Information, Intelligence, Systems and Applications(IISA).Piscataway:IEEE Press, 2019:1-8. [3] LIU H, HU Z, MIAN A, et al.A new user similarity model to improve the accuracy of collaborative filtering[J].Knowledge-Based Systems, 2014, 56:156-166. [4] GANU G, ELHADAD N, MARIAN A.Beyond the stars:Improving rating predictions using review text content[C]//International Workshop on the Web and Databases, 2009:1-6. [5] FIKIR O B, YAZ Ï O, ÖZYER T.Movie rating prediction with matrix factorization algorithm[M].Berlin:Springer, 2013:631-643. [6] 杨阳, 向阳, 熊磊.基于矩阵分解与用户近邻模型的协同过滤推荐算法[J].计算机应用, 2012, 32(2):395-398.YANG Y, XIANG Y, XIONG L.Collaborative filtering and recommendation algorithm based on matrix factorization and user nearest neighbor model[J].Journal of Computer Applications, 2012, 32(2):395-398(in Chinese). [7] CHAMBUA J, NIU Z, YOUSIF A, et al.Tensor factorization method based on review text semantic similarity for rating prediction[J].Expert Systems with Applications, 2018, 114:629-638. [8] KOREN Y, BELL R, VOLINSKY C.Matrix factorization techniques for recommender systems[J].Computer, 2009, 42(8):30-37. [9] VIARD T, FOURNIER-S'NIEHOTTA R.Movie rating prediction using content-based and link stream features[EB/OL].(2018-05-08)[2020-03-01].https://arxiv.org/abs/1805.02893v1. [10] QIAO Z, ZHANG P, HE J, et al.Combining geographical information of users and content of items for accurate rating prediction[C]//Proceedings of the Companion Publication of the 23rd International Conference on World Wide Web Companion.New York:ACM Press, 2014:361-362. [11] 丁少衡, 姬东鸿, 王路路.基于用户属性和评分的协同过滤推荐算法[J].计算机工程与设计, 2015, 36(2):487-497.DING S H, JI D H, WANG L L.Collaborative filtering recommendation algorithm based on user attributes and scores[J].Computer Engineering and Design, 2015, 36(2):487-497(in Chinese). [12] 邓日升, 岳昆, 武浩, 等.面向商品评分预测的隐变量模型构建与推理[J].小型微型计算系统, 2017, 38(2):352-356.DENG R S, YUE K, WU H, et al.Constructing and inferring latent variable model for predicting product ratings[J].Journal of Chinese Computer Systems, 2017, 38(2):352-356(in Chinese). [13] DAVOUDI A, CHATTERJEE M.Product rating prediction using trust relationships in social networks[C]//201613th IEEE Annual Consumer Communications & Networking Conference (CCNC).Piscataway:IEEE Press, 2016:15887960. [14] QUIJANO-SÁNCHEZ L, RECIO-GARCÍA J A, DÍAZ-AGUDO B.Group recommendation methods for social network environments[C]//3rd Workshop on Recommender Systems and the Social Web within the 5th ACM International Conference on Recommender Systems.New York:ACM Press, 2011:24. [15] 肖志宇, 翟玉庆.改进的基于信任网络和随机游走策略的评分预测模型[J].南京理工大学学报, 2015, 39(5):602-608.XIAO Z Y, ZHAI Y Q.Improved rating prediction model basing on trust network and random walk strategy[J].Journal of Nanjing University of Science and Technology, 2015, 39(5):602-608(in Chinese). [16] DAVOUDI A, CHATTERJEE M.Social trust model for rating prediction in recommender systems:Effects of similarity, centrality, and social ties[J].Online Social Networks and Media, 2018, 7:1-11. [17] 周文乐, 朱明, 蒋旦.综合时间及评分因素的电影评分预测方法[J].电子技术, 2015, 44(8):72-77.ZHOU W L, ZHU M, JIANG D.Time and rating factor considered rating prediction method[J].Electronic Technology, 2015, 44(8):72-77(in Chinese). [18] TIROSHI A, BERKOVSKY S, KAAFAR M A, et al.Improving business rating predictions using graph based features[C]//Proceedings of the 19th International Conference on Intelligent User Interfaces.New York:ACM Press, 2014:17-26. [19] PEROZZI B, AL-RFOU R, SKIENA S.DeepWalk:Online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM Press, 2014:701-710. [20] MIKOLOV T, CHEN K, CORRADO G, et al.Efficient estimation of word representations in vector space[EB/OL].(2013-01-16)[2020-03-01].https://arxiv.org/abs/1301.3781. [21] ORTEGA F, HERNANDO A, BOBADILLA J, et al.Recommending items to group of users using matrix factorization based collaborative filtering[J].Information Sciences, 2016, 345:313-324. |