留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲射流强化喷流混合流动显示实验

孔博 王昌盛 丁文豪 额日其太

孔博, 王昌盛, 丁文豪, 等 . 脉冲射流强化喷流混合流动显示实验[J]. 北京航空航天大学学报, 2021, 47(5): 994-1003. doi: 10.13700/j.bh.1001-5965.2020.0105
引用本文: 孔博, 王昌盛, 丁文豪, 等 . 脉冲射流强化喷流混合流动显示实验[J]. 北京航空航天大学学报, 2021, 47(5): 994-1003. doi: 10.13700/j.bh.1001-5965.2020.0105
KONG Bo, WANG Changsheng, DING Wenhao, et al. Flow visualization experiment of jet mixing enhancement using pulsed jets[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 994-1003. doi: 10.13700/j.bh.1001-5965.2020.0105(in Chinese)
Citation: KONG Bo, WANG Changsheng, DING Wenhao, et al. Flow visualization experiment of jet mixing enhancement using pulsed jets[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 994-1003. doi: 10.13700/j.bh.1001-5965.2020.0105(in Chinese)

脉冲射流强化喷流混合流动显示实验

doi: 10.13700/j.bh.1001-5965.2020.0105
基金项目: 

国家自然科学基金 11572027

详细信息
    作者简介:

    孔博  男, 博士。主要研究方向: 流动控制、飞行器红外隐身

    额日其太  男, 博士, 副研究员, 博士生导师。主要研究方向: 飞机进排气系统设计、红外隐身

    通讯作者:

    额日其太, E-mail: eriqitai@buaa.edu.cn

  • 中图分类号: V231.3

Flow visualization experiment of jet mixing enhancement using pulsed jets

Funds: 

National Natural Science Foundation of China 11572027

More Information
  • 摘要:

    采用激光诱导荧光的流动显示方法研究了在一对反对称模式工作的脉冲射流激励下,雷诺数约为33 000的圆形湍流射流的流场。捕捉了剪切层中大尺度展向涡结构的演化发展过程,研究了激励频率和振幅对涡结构以及强化混合效果的影响。结果表明:受激励后的主喷流剪切层中产生了交错的展向涡结构,引起了喷流的振荡,增强了卷吸能力。激励频率主要影响相邻涡环间的距离。存在最佳激励频率使喷流在受激励平面远场分叉、剪切层扩展最宽。激励振幅对涡结构也存在较大影响,振幅较大时产生的涡结构尺度更大、相干性更强、强化混合效果更好。

     

  • 图 1  实验设备示意图

    Figure 1.  Schematic of experimental setup

    图 2  主喷管和激励器布置方案

    Figure 2.  Arrangement of primary nozzle and actuators

    图 3  泵浦激光片激光光源

    Figure 3.  Diode-pumped solid state laser sheet

    图 4  图像采集系统

    Figure 4.  Image capture system

    图 5  激励器喷嘴及MAC电磁阀

    Figure 5.  Actuator nozzle and MAC solenoid valve

    图 6  脉冲延时信号发生器以及固体继电器

    Figure 6.  Pulse time-delay signal generator and solid state relay

    图 7  反对称模式时激励器产生脉冲射流速度时序

    Figure 7.  Time sequence of velocity of pulsed jet generated by actuator in antisymmetric mode

    图 8  自然喷流流动显示结果

    Figure 8.  Flow visualization result of natural jet

    图 9  SrD=0.077时,受激励平面大尺度涡结构演化过程

    Figure 9.  Evolution of large-scale vortex structures at forced plane when SrD=0.077

    图 10  不同激励频率时瞬态以及相位平均流场

    Figure 10.  Instantaneous and corresponding phase averaged images of flow field at forced plane at different excitation frequencies

    图 11  不同激励频率下的时均流场

    Figure 11.  Time-averaged flow field at different excitation frequencies

    图 12  不同激励振幅时瞬态和相位平均流场

    Figure 12.  Instantaneous and corresponding phase averaged images of flow field at different excitation amplitudes

    图 13  不同激励振幅下的时均流场

    Figure 13.  Time-averaged flow field at different excitation amplitudes

  • [1] VALDIS K, JOHN D, DAVID M S, et al. Active flow control technology transition: The boeing ACE program[C]//Proceedings of the 30th AIAA Fluid Dynamics Conference. Reston: AIAA, 1999: 1-12.
    [2] OBERT F, AHUJA K K, BRIAN C, et al. Jet mixing enhancemen[C]//Proceedings of the 10th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2004: 1-9.
    [3] CLARENCE F C, JOHN D, DAVID S, et al. Active core exhaust (ACE) control for reduction of thermal loading[C]//AIAA Fluid 2000 Conference and Exhibit. Reston: AIAA, 2000: 1-11.
    [4] LINDA D K. Active flow control technology[C]//ASME Fluids Engineering Division Technical Brief, 1999.
    [5] TONG F, JAMES J M. LDA measurements of underexpanded jet flow from an axisymmetric nozzle with solid tabs[C]//Proceedings of the 3rd AIAA Flow Control Conference. Reston: AIAA, 2006: 1-12.
    [6] CALLENDER B, GUTMARK E. A near-field investigation of chevron nozzle mechanisms[C]//Proceedings of the 9th AIAA/CEAS Aeroacoustics Conference and Exhibit. Reston: AIAA, 2003: 1-16.
    [7] SUN L Y, TERRENCE W S, SUSAN C, et al. Jet penetration into a scaled microfabricated stirling cycle regenerator[C]//Proceedings of the 6th International Energy Conversion Engineering Conference (IECEC). Reston: AIAA, 2008: 1-17.
    [8] SAMIMY M, KIM J H, KASTNER J, et al. Active control of a mach 0.9 jet for noise mitigation using plasma actuators[J]. AIAA Journal, 2007, 45(4): 890-901.
    [9] ADNAN E, ROBERT E B. Structure, penetration, and mixing of pulsed jets in cross flow[J]. AIAA Journal, 2001, 39(3): 417-423. doi: 10.2514/2.1351
    [10] RITCHIE B D, MUJUMDAR D R, SEITZMAN J M. Mixing in coaxial jets using synthetic jet actuators[C]//Proceedings of the 38th Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2000: 1-9.
    [11] PAREKH D E, KIBENS V, GLEZER A, et al. Innovative jet flow control: Mixing enhancement experiments[C]//Proceedings of the 34th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1996.
    [12] NEW T H, TAY W L. Effects of cross-stream radial injections on a round jet[J]. Journal of Turbulence, 2006, 7(57): 1-20.
    [13] YANG H, ZHOU Y. Axisymmetric jet manipulated using two unsteady minijets[J]. Journal of Fluid Mechanics, 2016, 808: 362-396. doi: 10.1017/jfm.2016.634
    [14] BEHROUZI P, MCGUIRK J J. Jet mixing enhancement using fluid tabs[C]//Proceedings of the 2nd AIAA Flow Control Conference. Reston: AIAA, 2004: 2401.
    [15] MUHAMMAD A K, MCGUIRK J J. Unsteady predictions of mixing enhancement with steady and pulsed control jets[J]. AIAA Journal, 2015, 53(5): 1262-1276. doi: 10.2514/1.J053374
    [16] DEWEY C. Qualitative and quantitative flow field visualization utilizing laser-induced fluorescence[C]//Proceedings of the AGARD Conference of Non-intrusive Instrumentation in Fluid Flow Research, 1976.
    [17] XIA Q F, ZHONG S. A PLIF and PIV study of liquid mixing enhanced by a lateral synthetic jet pair[J]. International Journal of Heat and Fluid Flow, 2012, 37: 64-73. doi: 10.1016/j.ijheatfluidflow.2012.04.010
    [18] YU J Z, VUORINEN V, KAARIO O, et al. Visualization and analysis of the characteristics of transitional underexpanded jets[J]. International Journal of Heat and Fluid Flow, 2013, 44: 140-154. doi: 10.1016/j.ijheatfluidflow.2013.05.015
    [19] THONG C X, DALLY B B, BIRZER C H, et al. An experimental study on the near flow field of a round jet affected by upstream multi-lateral side-jet[J]. Experimental Thermal and Fluid Science, 2017, 82: 198-211. doi: 10.1016/j.expthermflusci.2016.11.008
    [20] KONG B, LI T, ERI Q. Large-eddy simulation of turbulent jet controlled by two pulsed jets: Effect of forcing frequency[J]. Aerospace Science and Technology, 2019, 89: 356-369. doi: 10.1016/j.ast.2019.04.010
    [21] SUZUKI H, KASAGI N, SUZUKI Y. Active control of an axismmetric jet with distributed electromagnetic flap actuators[J]. Experiments in Fluids, 2004, 36: 498-509. doi: 10.1007/s00348-003-0756-0
  • 加载中
图(13)
计量
  • 文章访问数:  429
  • HTML全文浏览量:  173
  • PDF下载量:  159
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-22
  • 录用日期:  2020-06-29
  • 网络出版日期:  2021-05-20

目录

    /

    返回文章
    返回
    常见问答