[1] 谢长川, 王伟建,杨超.充气式机翼的颤振特性分析[J].北京航空航天大学学报,2011,37(7):833-838.XIE C C,WANG W J,YANG C.Flutter analysis of inflatable wings[J].Journal of Beijing University of Aeronautics and Astronautics,2011,37(7):833-838(in Chinese). [2] 华如豪, 叶正寅.排式充气机翼的高效气动布局研究[J].空气动力学学报,2012,30(2):184-191.HUA R H,YE Z Y.Research on effective aerodynamic configuration of row inflatable wings[J].Acta Aerodynamica Sinica,2012,30(2):184-191(in Chinese). [3] 张庆, 叶正寅.一种基于充气气囊的垂尾抖振抑制新方法研究[J].工程力学,2014,31(12):234-240.ZHANG Q,YE Z Y.Study on a new method for suppression of vertical tail buffeting using inflatable bumps[J].Engineering Mechanics,2014,31(12):234-240(in Chinese). [4] 王伟, 王华,贾清萍.充气机翼承载能力和气动特性分析[J].航空动力学报,2010,25(10):2296-2301.WANG W,WANG H,JIA Q P.Analysis on bearing capacity and aerodynamic performance of an inflatable wing[J].Journal of Aerospace Power,2010,25(10):2296-2301(in Chinese). [5] 卫剑征, 谭惠丰,王伟志,等.充气式再入减速器研究最新进展[J].宇航学报,2013,34(7):881-890.WEI J Z,TAN H F,WANG W Z,et al.New trends in inflatable reentry aeroshell[J].Journal of Astronautics,2013,34(7):881-890(in Chinese). [6] 张庆, 叶正寅.一种新型可控方向的再入充气罩[J].应用力学学报,2013,30(4):504-509.ZHANG Q,YE Z Y.A new controllable inflatable shield for reentry[J].Chinese Journal of Applied Mechanics,2013,30(4):504-509(in Chinese). [7] 李爽,江秀强.火星进入减速器技术综述与展望[J].航空学报,2015,36(2):422-440.LI S,JIANG X Q.Review and prospect of decelerator technologies for mars entry[J].Acta Aeronautica et Astronautica Sinica,2015,36(2):422-440(in Chinese). [8] LI S,JIANG X.Review and prospect of guidance and control for mars atmospheric entry[J].Progress in Aerospace Sciences,2014,69:40-57. [9] 张庆,叶正寅.排式双翼布局低雷诺数气动特性计算研究[J].工程力学,2019,36(10):244-256.ZHANG Q,YE Z Y.Computational investigations for aerodynamic characteristic analysis of low Reynolds number doubly-tandem wing configurations[J].Engineering Mechanics,2019,36(10):244-256(in Chinese). [10] 张庆,叶正寅.基于气动导数的类X-37B飞行器纵向稳定性分析[J].北京航空航天大学学报,2020,46(1):77-85.ZHANG Q,YE Z Y.Longitudinal stability analysis for X-37B like trans-atmospheric orbital test vehicle based on aerodynamic derivatives[J].Journal of Beijing University of Aeronautics and Astronautics,2020,46(1):77-85(in Chinese). [11] 吕强,叶正寅,李栋.充气结构机翼的设计和试验研究[J].飞行力学,2007,25(4):77-80.LV Q,YE Z Y,LI D.Design and capability analysis of an aircraft with inflatable wing[J].Flight Dynamics,2007,25(4):77-80(in Chinese). [12] HU H,TAMAI M.Bioinspired corrugated airfoil at low Reynolds numbers[J].Journal of Aircraft,2008,45(6):2068-2077. [13] MURPHY J T,HU H.An experimental study of a bio-inspired corrugated airfoil for micro air vehicle applications[J].Experiments in Fluids,2010,49(2):531-546. [14] YOKOZEKI T,SUGIURA A,HIRANO Y.Development of variable camber morphing airfoil using corrugated structure[J].Journal of Aircraft,2014,51(3):1023-1029. [15] HORD K,LIANG Y.Numerical investigation of the aerodynamic and structural characteristics of a corrugated airfoil[J].Journal of Aircraft,2012,49(3):749-757. [16] FLINT T J,JERMY M C,NEW T H,et al.Computational study of a pitching bio-inspired corrugated airfoil[J].International Journal of Heat and Fluid Flow,2017,65:328-341. [17] TANG H,LEI Y,LI X,et al.Numerical investigation of the aerodynamic characteristics and attitude stability of a bio-inspired corrugated airfoil for MAV or UAV applications[J].Energies,2019,12(20):4021. [18] BARNES C J,VISBAL M R.Numerical exploration of the origin of aerodynamic enhancements in low-Reynolds number corrugated airfoils[J].Physics of Fluids,2013,25(11):115106. [19] HO W H,NEW T H.Unsteady numerical investigation of two different corrugated airfoils[J].Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2017,231(13):2423-2437. [20] SHI X,HUANG X,ZHENG Y,et al.Effects of cambers on gliding and hovering performance of corrugated dragonfly airfoils[J].International Journal of Numerical Methods for Heat & Fluid Flow,2016,26(3/4):1092-1120. |