北京航空航天大学学报 ›› 2021, Vol. 47 ›› Issue (7): 1338-1344.doi: 10.13700/j.bh.1001-5965.2020.0191

• 论文 • 上一篇    下一篇

基于导重法的自重载荷下悬臂梁结构拓扑优化

任毅如1, 向剑辉1, 何杰1, 宁克焱2, 杨玲玲2   

  1. 1. 湖南大学 机械与运载工程学院, 长沙 410082;
    2. 中国北方车辆研究所, 北京 100072
  • 收稿日期:2020-05-18 发布日期:2021-08-06
  • 通讯作者: 任毅如 E-mail:renyiru@hnu.edu.cn
  • 基金资助:
    工业和信息化部基础产品创新科研项目(237099000000170008)

Topology optimization of cantilever structure with self-weight load based on guide-weight method

REN Yiru1, XIANG Jianhui1, HE Jie1, NING Keyan2, YANG Lingling2   

  1. 1. College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China;
    2. China North Vehicle Research Institute, Beijing 100072, China
  • Received:2020-05-18 Published:2021-08-06
  • Supported by:
    Innovation Research Project of Basic Product of Ministry of Industry and Information Technology of China (237099000000170008)

摘要: 针对自重载荷悬臂梁结构拓扑优化末端区域材料分布不收敛的问题,提出了一种拓扑优化方法。根据虚功相等原理,利用四节点矩形单元的形函数、单元体积密度和质量的关系建立了载荷等效方法。根据优化模型的Kuhn-Tucker条件推导出了导重准则,以及目标函数的灵敏度公式和考虑自重载荷拓扑优化的迭代算法。针对自重载荷作用下悬臂梁结构拓扑优化存在的末端区域材料分布模糊问题,研究了变密度法和非结构质量相结合的求解策略,揭示了典型因素对拓扑结构的影响规律。结果表明:所提方法能够解决自重载荷下悬臂梁末端区域材料分布模糊问题。

关键词: 拓扑优化, 导重法, 变密度法, 自重载荷, 材料属性有理近似函数插值(RAMP)模型

Abstract: Aiming at the problem of non-convergence of the material distribution at the end of the cantilever beam structure under self-weight load, a topology optimization method for the cantilever beam structure under self-weight load is proposed to solve the problem. According to the principle of virtual work equal, the load equivalent method was established by the relationship among the shape function of the four-node rectangular element, the unit volume density and the mass. According to the Kuhn-Tucker condition of the optimization model, the guide-weight criterion was derived, the sensitivity formula of the objective function was obtained, and the iterative formula considering the topology optimization of the self-weight load was derived. Aimed at the problem of ambiguity of material distribution in the end region of the topological optimization of a cantilever beam structure under self-weight load, a solution strategy combining variable density method and non-structural mass was studied, and the influence of typical factors on the topological structure was revealed. The results show that this method can solve the problem of fuzzy material distribution at the end of a cantilever beam under self-weight.

Key words: topology optimization, guide-weight method, variable density method, self-weight load, Rational Approximation of Material Properties (RAMP) model

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发