北京航空航天大学学报 ›› 2021, Vol. 47 ›› Issue (8): 1565-1570.doi: 10.13700/j.bh.1001-5965.2020.0283

• 论文 • 上一篇    下一篇

飞行包线下燃油箱耗氧型催化惰化系统性能研究

彭孝天1, 冯诗愚1, 任童1, 张瑞华1, 潘俊2, 王洋洋2   

  1. 1. 南京航空航天大学 航空学院 飞行器环境控制与生命保障工业和信息化部重点实验室, 南京 210016;
    2. 中国航空工业集团 南京机电液压工程研究中心 航空机电系统综合航空科技重点实验室, 南京 211106
  • 收稿日期:2020-06-19 发布日期:2021-09-06
  • 通讯作者: 冯诗愚 E-mail:shiyuf@nuaa.edu.cn
  • 基金资助:
    国家自然科学基金(U1933121);南京航空航天大学研究生拔尖创新人才培养“引航计划”跨学科创新基金(KXKCXJJ202004);江苏省研究生科研与实践创新计划(KYCX19_0198);江苏高校优势学科建设工程

Performance of oxygen-consuming catalytic inerting system of fuel tank under flight envelope

PENG Xiaotian1, FENG Shiyu1, REN Tong1, ZHANG Ruihua1, PAN Jun2, WANG Yangyang2   

  1. 1. Key Laboratory of Aircraft Environmental Control and Life Support Industry and Information Technology, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Aviation Key Laboratory of Science and Technology on Aero Electromechanical System Integration, Nanjing Engineering Institute of Aircraft Systems, Aviation Industry Corporation of China, Nanjing 211106, China
  • Received:2020-06-19 Published:2021-09-06
  • Supported by:
    National Natural Science Foundation of China (U1933121); Interdisciplinary Innovation Fundation for Graduates, NUAA(KXKCXJJ202004); Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX19_0198); Priority Academic Program Development of Jiangsu Higher Education Institutions

摘要: 为给新型耗氧催化惰化系统部件设计提供输入参数,在提出低温可控耗氧催化惰化系统流程基础上,以燃油箱出口抽吸流量为基准,基于质量守恒和能量守恒方程,建立了系统流程模型。以中央燃油箱为对象,仿真研究了全飞行包线下惰化系统的重要性能变化,以及关键参数对其影响。结果表明:惰化系统可以有效降低氧体积分数,如在初始满载、催化效率0.5、风机抽吸流量60 L/min条件下,24 min后氧体积分数即降至12%以下;在飞行过程中,燃油箱气相氧氧体积分数在下降及进场阶段上升,其他阶段均呈下降趋势;催化效率越高、风机抽吸流量越大,所需惰化时间越小,且催化效率一定时,达到相同惰化时间,初始空载时所需风机抽吸流量最大。应按最不利的空载工况来设计耗氧型催化惰化系统。

关键词: 耗氧催化惰化, 燃油箱, 飞行包线, 氧体积分数, 可燃性

Abstract: In order to provide input parameters for the design of new types of oxygen-consuming inerting system components, based on the proposed low-temperature controllable oxygen-consuming catalytic inerting system flow, the system mathematical model is established based on the mass conservation and energy conservation equations with the suction flow rate at the outlet of fuel tank as the benchmark. Taking the central fuel tank as the object, the important performance changes of the inerting system under the full flight envelope and the influence of key parameters on it are simulated. The results show that:inerting system can effectively reduce the oxygen volume fraction. For example, under the condition of initial full load, 0.5 catalytic efficiency and 60 L/min suction flow, the oxygen volume fraction will reach below 12% after 24 minutes. During the flight, the volume fraction of gas phase oxygen in the fuel tank rises during the declining and approaching phases, while it is decreasing in other phases. The higher the catalytic efficiency is and the larger the fan flow is, the shorter the inerting time is required. When the catalytic efficiency is fixed, the same inerting time is achieved, and the maximum fan suction flow is required when there is no fuel load. Therefore, the oxygen-consuming catalytic inert system should be designed according to the most unfavorable no fuel load working conditions.

Key words: oxygen-consuming catalytic inerting, fuel tank, flight envelope, oxygen volume fraction, flammability

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发