[1] JACOBSEN S C,OLIVIER M,SMITH F M,et al.Research robots for applications in artificial intelligence,teleoperation and entertainment[J].The International Journal of Robotics Research,2004,23(4-5):319-330. [2] LIANG J W,JIANG L,NIEBLES J C,et al.Peeking into the future:Predicting future person activities and locations in videos[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).Piscataway:IEEE Press,2019:2960-2963. [3] 王昕.面向下肢康复机器人的运动意图识别技术研究[D].杭州:浙江大学,2019:97-98.WANG X.Research on motion intention recognition technology for lower limb rehabilitation robot[D].Hangzhou:Zhejiang University,2019:97-98(in Chinese). [4] ALAHI A,GOEL K,RAMANATHAN V,et al.Social LSTM:Human trajectory prediction in crowded spaces[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway:IEEE Press,2016:961-971. [5] BHATTACHARYYA A,FRITZ M,SCHIELE B.Long-term on-board prediction of people in traffic scenes under uncertainty[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workships (CVPRW).Piscataway:IEEE Press,2018:4194-4202. [6] CHANDRA R,GUAN T R,PANUGANTI S,et al.Forecasting trajectory and behavior of road-agents using spectral clustering in graph-LSTMs[J].IEEE Robotics and Automation Letters,2020,5(3):4882-4890. [7] CHANDRA R,BHATTACHARYA U,BERA A,et al.TraPHic:Trajectory prediction in dense and heterogeneous traffic using weighted interactions[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway:IEEE Press,2019:8475-8484. [8] XU Y Y,PIAO Z X,GAO S H.Encoding crowd interaction with deep neural network for pedestrian trajectory prediction[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Piscataway:IEEE Press,2018:5275-5284. [9] HAYASHI T,KAWAMOTO H,SANKAI Y.Control method of robot suit HAL working as operator's muscle using biological and dynamical information[C]//2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway:IEEE Press,2005:3063-3068. [10] 张富平.图像去噪增强算法的研究[D].重庆:重庆大学,2014:1-2.ZHANG F P.Research of image enhancement and image denoising[D].Chongqing:Chongqing University,2014:1-2(in Chinese). [11] 苏泫.基于IMU预积分的视觉惯性里程计系统[D].广州:华南理工大学,2018:5-7.SU X.Visual-inertial odometry based on IMU pre-integration[D].Guangzhou:South China University of Technology,2018:5-7(in Chinese). [12] QIN T,LI P L,SHEN S J.VINS-Mono:A robust and versatile monocular visual-inertial state estimator[J].IEEE Transactions on Robotics,2018,34(4):1004-1020. [13] 张裕天.基于视觉感知的多模态多任务端到端自动驾驶方法研究[D].广州:华南理工大学,2019:43-45.ZHANG Y T.Research on multi-modal multi-task end-to-end autonomous driving method based on visual perception[D].Guangzhou:South China University of Technology,2019:43-45(in Chinese). [14] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway:IEEE Press,2016:770-778. [15] FLETCHER D,IAN P.3D数学基础:图形与游戏开发[M].史银雪,陈洪,王荣静,译.北京:清华大学出版社,2005:154-157.FLETCHER D,IAN P.3D math primer for graphics and game development[M].SHI Y X,CHEN H,WANG R J,translated.Beijing:Tsinghua University Press,2005:154-157(in Chinese). [16] FU R,ZHANG Z,LI L.Using LSTM and GRU neural network methods for traffic flow prediction[C]//2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC).Piscataway:IEEE Press,2016:324-328. [17] KINGMA D P,BA J.Adam:A method for stochastic optimization[EB/OL].(2015-07-23)[2020-06-23].https://arxiv.org/abs/1412.6980. |