北京航空航天大学学报 ›› 2021, Vol. 47 ›› Issue (9): 1874-1883.doi: 10.13700/j.bh.1001-5965.2020.0334

• 论文 • 上一篇    下一篇

红外空空导弹抗干扰效能评估建模

牛得清1, 伍友利1, 徐洋2, 吴鑫1, 张丹旭3, 杨鹏飞4   

  1. 1. 空军工程大学 航空工程学院, 西安 710038;
    2. 中国空气动力研究与发展中心 超高速空气动力学研究所, 绵阳 621000;
    3. 空军西安飞行学院, 西安 710300;
    4. 军事科学院 评估论证研究中心, 北京 100091
  • 收稿日期:2020-07-13 发布日期:2021-10-09
  • 通讯作者: 伍友利 E-mail:wadebae@163.com

Modeling of anti-jamming effectiveness evaluation of infrared air-to-air missile

NIU Deqing1, WU Youli1, XU Yang2, WU Xin1, ZHANG Danxu3, YANG Pengfei4   

  1. 1. School of Aeronautics Engineering, Air Force Engineering University, Xi'an 710038, China;
    2. Institute of Ultra-High Speed Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    3. Air Force Xi'an Flight College, Xi'an 710300, China;
    4. Research Center for Assessment and Argumentation, Academy of Military Science, Beijing 100091, China
  • Received:2020-07-13 Published:2021-10-09

摘要: 为了摸清红外空空导弹性能、提高导弹作战效能,需要全面有效地对导弹抗干扰能力进行评估。但是受限于无穷多的对抗情况,目前多数基于典型对抗场景进行研究分析,不够全面。为此使用改进的拉丁超立方采样法在全范围内设计采样点。首先,对红外对抗原理和仿真系统进行说明和构建,确定输入参数范围和类型;其次,对拉丁超立方采样进行改进优化,并将其生成的采样结果按需离散化,满足诱饵离散型参数设置需求;最后,运用上述生成的初始参数组合运行仿真系统,将获取的数据作为样本集交给随机森林模型学习,通过调优参数及调整损失矩阵后,得到预测精度为90.4%的红外空空导弹抗干扰效能评估模型。通过仿真,验证了所提模型在不同红外对抗态势和不同提取误差下的有效性。

关键词: 红外对抗, 抗干扰效能, 试验设计优化, 拉丁超立方采样, 随机森林

Abstract: In order to estimate the performance of infrared air-to-air missiles and improve its combat effectiveness, an overall valid evaluation of missiles' anti-jamming capability is required. However, due to the infinite number of countermeasure situations, most scholars currently study and analyze them based on typical countermeasure scenarios, which is inadequate. For this reason, the improved Latin hypercube sampling method was used to design sampling points in the whole range. Firstly, the infrared countermeasure principle and simulation system were explained and constructed, and the range and the type of input parameters were determined. Secondly, the Latin hypercube sampling method was improved and optimized, and the generated sampling results were discretized as needed to meet the needs of the decoy discrete parameter setting. Finally, the initial parameter combinations generated above were used to run the simulation system, and the obtained data were given to the random forest model as learning sample sets. After tuning the parameters and adjusting the loss matrix, the anti-jamming effectiveness evaluation model of the infrared air-to-air missiles was obtained and the prediction accuracy was 90.4%. Through simulation, the effectiveness of the model was verified under different IR countermeasures and different measurement errors..

Key words: infrared countermeasures, anti-jamming effectiveness, experiment design optimization, latin hypercube sampling, random forests

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发