[1] 黄鹤松,童中翔,李建勋,等.基于空战评估的红外空空导弹功能仿真[J].红外与激光工程,2015,44(3):803-809.HUANG H S,TONG Z X,LI J X,et al.Functional simulation of infrared air-to-air missiles based on combat assessment[J].Infrared and Laser Engineering,2015,44(3):803-809(in Chinese). [2] 牛得清,伍友利,徐洋,等.点源红外诱饵干扰下环境复杂度量化建模[J].红外与激光工程,2020,49(2):211-219.NIU D Q,WU Y L,XU Y,et al.Quantification modeling for environmental complexity under point source infrared decoy interference[J].Infrared and Laser Engineering,2020,49(2):211-219(in Chinese). [3] 李慎波,李韬锐,童中翔,等.导弹战术参数对面源红外诱饵干扰效能影响[J].红外与激光工程,2018,47(7):133-142.LI S B,LI T R,TONG Z X,et al.Influence of tactical parameters of missile on jamming effectiveness of surface source infrared decoy[J].Infrared and Laser Engineering,2018,47(7):133-142(in Chinese). [4] 徐洋,方洋旺,伍友利,等.红外诱饵干扰下导引头视线角速度跳变特征建模[J].红外与激光工程,2019,48(5):110-120.XU Y,FANG Y W,WU Y L,et al.Los-rate of seeker jump characteristic modelling under IR flare countermeasure[J].Infrared and Laser Engineering,2019,48(5):110-120(in Chinese). [5] 唐善军,王枫,陈晓东.红外导弹抗干扰能力指标体系和评估研究[J].上海航天,2017,34(4):144-149.TANG S J,WANG F,CHEN X D.Anti-jamming performance index system and evaluation of infrared missile[J].Aerospace Shanghai,2017,34(4):144-149(in Chinese). [6] DE JONG W,DAM F A M,KUNZ G J,et al.IR seeker simulator and IR scene generation to evaluate IR decoy effectiveness[C]//European Symposium on Optics and Photonics for Defence and Security,2004,5615:100-111. [7] SHEIKHOLESLAMI R,RAZAVI S.Progressive Latin hypercube sampling:An efficient approach for robust sampling-based analysis of environmental models[J].Environmental Modelling & Software,2017,93:109-126. [8] MINASNY B,MCBRATNEY A B.A conditioned Latin hypercube method for sampling in the presence of ancillary information[J].Computers & Geosciences,2006,32(9):1378-1388. [9] VAN DAM E R,RENNEN G,HUSSLAGE B.Bounds for maximin Latin hypercube designs[J].Operations Research,2009,57(3):595-608. [10] ZHANG J,XU J,JIA K,et al.Optimal sliced Latin hypercube designs with slices of arbitrary run sizes[J].Mathematics,2019,7(9):854. [11] YUAN R,GUO B,LIU M Q.Flexible sliced Latin hypercube designs with slices of different sizes[J].Statistical Papers,2021,62:1117-1134. [12] WESSING S,LÓPEZ-IBÁÑEZ M.Latin hypercube designs with branching and nested factors for initialization of automatic algorithm configuration[J].Evolutionary Computation,2019,27(1):129-145. [13] ZHAO Z W,YANG J M,HU Z Y,et al.A differential evolution algorithm with self-adaptive strategy and control parameters based on symmetric Latin hypercube design for unconstrained optimization problems[J].European Journal of Operational Research,2016,250(1):30-45. [14] ZHOU X J,LIN D K J,HU X L,et al.Sequential Latin hypercube design with both space-filling and projective properties[J].Quality and Reliability Engineering International,2019,35(6):1941-1951. [15] LONG T,WU D,CHEN X,et al.A deterministic sequential maximin Latin hypercube design method using successive local enumeration for metamodel-based optimization[J].Engineering Optimization,2016,48(6):1019-1036. [16] 叶鹏程,潘光,高山.一种快速优化拉丁超立方试验设计方法[J].西北工业大学学报,2019,37(4):714-723.YE P C,PAN G,GAO S.Sampling design method of fast optimal Latin hypercube[J].Journal of Northwestern Polytechnical University,2019,37(4):714-723(in Chinese). [17] 张鑫,吴海涛,曹雪虹.Hadoop环境下基于随机森林的特征选择算法[J].计算机技术与发展,2018,28(7):88-92.ZHANG X,WU H T,CAO X H.A feature selection algorithm based on random forest in Hadoop platform[J].Computer Technology and Development,2018,28(7):88-92(in Chinese). [18] 李扬,祁乐,聂佩芸.大规模数据的随机森林算法[J].统计与信息论坛,2020,35(6):24-33.LI Y,QI L,NIE P Y.A distributed random forest algorithm for massive data[J].Statistics & Information Forum,2020,35(6):24-33(in Chinese). [19] 兰巍,贾素玲,宋世民,等.基于随机森林的航天器电信号多分类识别方法[J].北京航空航天大学学报,2017,43(9):1773-1778.LAN W,JIA S L,SONG S M,et al.Multi-classification spacecraft electrical signal identification method based on random forest[J].Journal of Beijing University of Aeronautics and Astronautics,2017,43(9):1773-1778(in Chinese). |