留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂线束在双BCI耦合下的终端响应机理

石旭东 张和茂 赵宏旭 李瑞蒲 王雪飞

石旭东, 张和茂, 赵宏旭, 等 . 复杂线束在双BCI耦合下的终端响应机理[J]. 北京航空航天大学学报, 2021, 47(9): 1739-1747. doi: 10.13700/j.bh.1001-5965.2020.0336
引用本文: 石旭东, 张和茂, 赵宏旭, 等 . 复杂线束在双BCI耦合下的终端响应机理[J]. 北京航空航天大学学报, 2021, 47(9): 1739-1747. doi: 10.13700/j.bh.1001-5965.2020.0336
SHI Xudong, ZHANG Hemao, ZHAO Hongxu, et al. Terminal response mechanism of complex wire harness under double BCI coupling[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1739-1747. doi: 10.13700/j.bh.1001-5965.2020.0336(in Chinese)
Citation: SHI Xudong, ZHANG Hemao, ZHAO Hongxu, et al. Terminal response mechanism of complex wire harness under double BCI coupling[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1739-1747. doi: 10.13700/j.bh.1001-5965.2020.0336(in Chinese)

复杂线束在双BCI耦合下的终端响应机理

doi: 10.13700/j.bh.1001-5965.2020.0336
基金项目: 

国家自然科学基金 51377161

航空科学基金 20182667010

中央高校基本科研业务费专项资金 3122018D003

天津市高等学校创新团队培养计划 TD13-5071

详细信息
    通讯作者:

    赵宏旭, E-mail: zhx2581@163.com

  • 中图分类号: V240.3;V241.9;TM151

Terminal response mechanism of complex wire harness under double BCI coupling

Funds: 

National Natural Science Foundation of China 51377161

Aeronautical Science Foundation of China 20182667010

the Fundamental Research Funds for the Central Universities 3122018D003

Training Plan for Innovation Teams in Tianjin Colleges and Universities TD13-5071

More Information
  • 摘要:

    高强度辐射场实验室环境下构建困难,应用双大电流注入(BCI)法替代辐照法进行抗扰度研究具有广阔的前景。针对当前双电流钳与线束耦合机理不清晰的问题,建立了双电流钳与线束耦合的精确解析模型。采用先分段后级联的方法对线束进行研究,首先在电流钳与线束的耦合区间建立π型等效电路模型,然后在电流钳与线束的非耦合区间基于传输线理论构建链路参数矩阵,最后将各区间级联为线束终端响应预测模型。基于有限积分法建立数值电磁仿真模型,比较解析模型与数值仿真模型对线束终端响应的预测结果,结果显示:二者对线束终端响应电压的求解结果有较好的一致性,MAPE为17%,进而验证了模型的有效性。应用模型分析电流钳与线束的相对位置对终端响应电压的影响,结果表明:低频段几乎无影响,超过100 MHz,线束终端响应电压的幅值与谐振点发生改变。

     

  • 图 1  线束分段示意图

    Figure 1.  Schematic diagram of wire harness segmentation

    图 2  多线束耦合集总参数电路

    Figure 2.  Multi-wire-harness coupling lumped parameter circuit

    图 3  耦合区间截面

    Figure 3.  Cross-section of coupling zone

    图 4  CST模型剖面

    Figure 4.  Sectional view of CST model

    图 5  线束构型示意图

    Figure 5.  Schematic diagram of wire harness configuration

    图 6  CST电磁仿真模型

    Figure 6.  CST electromagnetic simulation model

    图 7  线缆数为1的结果对比

    Figure 7.  Comparison of results with cable count of 1

    图 8  线缆数为4的结果对比

    Figure 8.  Comparison of results with cable count of 4

    图 9  线缆数为7的结果对比

    Figure 9.  Comparison of results with cable count of 7

    图 10  电流钳与线束的相对位置对中心线缆1的影响

    Figure 10.  Influence of the relative position of current probe and wire harness on central cable number 1

    图 11  电流钳与线束终端距离对中心线缆1的影响

    Figure 11.  Influence of the distance between current probe and cable terminal on central cable number 1

    表  1  一阶Debye模型参数

    Table  1.   First-order Debye model parameters

    参数 数值
    电导率σ/(S·m-1) 1.3
    稳态常数 1
    静态常数 375
    驰豫时间/ns 0.5
    下载: 导出CSV

    表  2  电流钳结构参数

    Table  2.   Structural parameters of current injection probe

    参数 数值
    rin/mm 24
    rout/mm 39
    rpin/mm 16
    lc/mm 130
    tc/mm 1
    wc/mm 6
    w/mm 50
    W/mm 63
    N1 1
    下载: 导出CSV
  • [1] 魏光辉, 卢新福, 潘晓东. 强场电磁辐射效应测试方法研究进展与发展趋势[J]. 高电压技术, 2016, 42(5): 1347-1355. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201605002.htm

    WEI G H, LU X F, PAN X D. Recent progress and development in test methods for high intensity electromagnetic field radiation effect[J]. High Voltage Engineering, 2016, 42(5): 1347-1355(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201605002.htm
    [2] 杨茂松, 孙永卫, 潘晓东, 等. 低频线缆BCI等效替代强场连续波电磁辐射理论研究[J]. 河北师范大学学报(自然科学版), 2018, 42(5): 396-402. https://www.cnki.com.cn/Article/CJFDTOTAL-HBSZ201805006.htm

    YANG M S, SUN Y W, PAN X D, et al. Research on the theory of BCI equivalent alternative radiation for low-frequency cable coupling channel[J]. Journal of Hebei Normal University (Natural Science Edition), 2018, 42(5): 396-402(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HBSZ201805006.htm
    [3] 肖春燕, 高帅. 多电飞机电气负载引起的电磁干扰[J]. 北京航空航天大学学报, 2015, 41(5): 793-801. doi: 10.13700/j.bh.1001-5965.2014.0339

    XIAO C Y, GAO S. Electromagnetic interference caused by electric load of more electric aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(5): 793-801(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0339
    [4] RTCA Inc. Environmental conditions and test procedures for airborne equipment: RTCA DO-160G[S]. Washington, D.C. : RTCA Inc, 2010.
    [5] 中国人民解放军总装备部. 军用设备和分系统电磁发射和敏感度要求与测量: GJB 151B-2013[S]. 北京: 中国人民解放军总装备部, 2013.

    PLA General Equipment Department. Electromagnetic emission and susceptibility requirements and measurements for military equipment and subsystems: GJB 151B-2013[S]. Beijing: PLA General Equipment Department, 2013(in Chinese).
    [6] U.S. Department of Defense. Requirements for the control of electromagnetic interference characteristics of subsystems and equipment: MIL-STD-461G[S]. Washington, D.C. : U.S. Department of Defense, 2015.
    [7] 卢新福, 魏光辉, 潘晓东, 等. 差模电流注入等效电磁脉冲辐射技术仿真研究[J]. 中国舰船研究, 2015, 10(2): 99-103. https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG201502019.htm

    LU X F, WEI G H, PAN X D, et al. Simulation study on the differential-mode current injection equivalent to electromagnetic pulse radiation[J]. Chinese Journal of Ship Research, 2015, 10(2): 99-103(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG201502019.htm
    [8] 魏光辉, 潘晓东, 卢新福. 注入与辐照相结合的电磁辐射安全裕度试验方法[J]. 高电压技术, 2012, 38(9): 2213-2220. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201209011.htm

    WEI G H, PAN X D, LU X F. Test method for electromagnetic radiation safety margin combined iniection with radiation[J]. High Voltage Engineering, 2012, 38(9): 2213-2220(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201209011.htm
    [9] 杨茂松, 孙永卫, 潘晓东, 等. 平行双线BCI等效替代强场连续波电磁辐射实验研究[J]. 强激光与粒子束, 2018, 30(9): 093201. https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201809011.htm

    YANG M S, SUN Y W, PAN X D, et al. Testing technology of using bulk current injection with parallel double line as substitute for high field continuous wave electromagnetic radiation[J]. High Power Laser and Particle Beams, 2018, 30(9): 093201(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QJGY201809011.htm
    [10] 杨茂松, 孙永卫, 潘晓东, 等. 双绞线BCI等效替代强场电磁辐射实验研究[J]. 微波学报, 2018, 34(6): 72-77. https://www.cnki.com.cn/Article/CJFDTOTAL-WBXB201806017.htm

    YANG M S, SUN Y W, PAN X D, et al. Testing technology of using twisted pair cable BCI as substitution for high field continuous wave EM radiation[J]. Journal of Microwaves, 2018, 34(6): 72-77(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WBXB201806017.htm
    [11] GRASSI F, MARLIANI F, PIGNARI S A. Circuit modeling of injection probes for bulk current injection[J]. IEEE Transactions on Electromagnetic Compatibility, 2007, 49(3): 563-576. http://www.onacademic.com/detail/journal_1000035158171010_9f22.html
    [12] DEROY P, PIPER S. Full-wave modeling of bulk current injection probe coupling to multi-conductor cable bundles[C]//2016 IEEE International Symposium on Electromagnetic Compatibility (EMC). Piscataway: IEEE Press, 2016: 770-774.
    [13] NAYAK B P, DAS A, VEDICHERLA S R, et al. Circuit models for bulk current injection (BCI) clamps with multiple cables[C]//2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC). Piscataway: IEEE Press, 2018: 1160-1163.
    [14] GRASSI F. Accurate modeling of ferrite-core effects in probes for bulk current injection[C]//IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems. Piscataway: IEEE Press, 2009: 1-6.
    [15] OGANEZOVA I, BUNLON X, GHEONJIAN A, et al. A new and easy approach to create BCI models[C]//2014 IEEE International Symposium on Electromagnetic Compatibility. Piscataway: IEEE Press, 2014: 91-96.
    [16] ZHU L L, JING S H. MATLAB-based multi-parameter optimization of bulk current injection probe[C]//2019 IEEE International Conference on Computation, Communication and Engineering (ICCCE). Piscataway: IEEE Press, 2019: 170-173.
    [17] PAUL C R. Analysis of multiconductor transmission lines[M]. 2nd ed. Hoboken: Wiley, 2008.
    [18] TOSCANI N, GRASSI F, SPADACINI G, et al. Circuit and electromagnetic modeling of bulk current injection test setups involving complex wiring harnesses[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(6): 1752-1760. http://www.onacademic.com/detail/journal_1000040373062610_0d33.html
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  382
  • HTML全文浏览量:  131
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-13
  • 录用日期:  2020-10-16
  • 网络出版日期:  2021-09-20

目录

    /

    返回文章
    返回
    常见问答