留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于TechDemoSat-1卫星的GPS反射信号海面高度反演

张云 马德皓 孟婉婷 郑俏 杨树瑚

张云, 马德皓, 孟婉婷, 等 . 基于TechDemoSat-1卫星的GPS反射信号海面高度反演[J]. 北京航空航天大学学报, 2021, 47(10): 1941-1948. doi: 10.13700/j.bh.1001-5965.2020.0357
引用本文: 张云, 马德皓, 孟婉婷, 等 . 基于TechDemoSat-1卫星的GPS反射信号海面高度反演[J]. 北京航空航天大学学报, 2021, 47(10): 1941-1948. doi: 10.13700/j.bh.1001-5965.2020.0357
ZHANG Yun, MA Dehao, MENG Wanting, et al. Sea surface height inversion of GPS reflected signal based on TechDemoSat-1 satellite[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 1941-1948. doi: 10.13700/j.bh.1001-5965.2020.0357(in Chinese)
Citation: ZHANG Yun, MA Dehao, MENG Wanting, et al. Sea surface height inversion of GPS reflected signal based on TechDemoSat-1 satellite[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 1941-1948. doi: 10.13700/j.bh.1001-5965.2020.0357(in Chinese)

基于TechDemoSat-1卫星的GPS反射信号海面高度反演

doi: 10.13700/j.bh.1001-5965.2020.0357
基金项目: 

国家自然科学基金 41376178

国家自然科学基金 41401489

详细信息
    通讯作者:

    杨树瑚, E-mail: shyang@shou.edu.cn

  • 中图分类号: P228.4

Sea surface height inversion of GPS reflected signal based on TechDemoSat-1 satellite

Funds: 

National Natural Science Foundation of China 41376178

National Natural Science Foundation of China 41401489

More Information
  • 摘要:

    针对星载GPS反射信号(GPS-R)海面测高的误差问题,基于星载GPS-R实测数据进行星载海面测高模型和误差修正模型的研究,并验证其有效性。利用TechDemoSat-1(TDS-1)数据,使用时延多普勒图(DDM)海面高度反演技术,着重分析了星载GPS-R海面高度反演中的各类误差,并建立了相应的误差模型。对星载GPS-R海面高度反演模型进行优化,采用DTU15全球平均海面模型、DTU全球海潮模型验证反演精度。结果证明:优化后反演模型得到的全球海面高度反演结果的平均绝对误差(MAD)为6.05 m,精度提高了约29%,有效提高了海面高度反演的精度。研究成果对于推广星载GNSS反射信号(GNSS-R)的海面测高应用具有一定的意义。

     

  • 图 1  星载GPS-R海面高度反演几何原理

    Figure 1.  Geometric principles of satellite-borne GPS-R sea surface height inversion

    图 2  影响GPS-R信号的主要误差

    Figure 2.  Main errors affecting GPS-R signal

    图 3  考虑接收机和发射机运动的几何模型

    Figure 3.  Geometric model considering receiver motion and transmitter motion

    图 4  TDS-1数据处理流程

    Figure 4.  TDS-1 data processing flow

    图 5  DDM示例

    Figure 5.  An example of DDM

    图 6  归一化能量值插值后多普勒频率为零的切片

    Figure 6.  Slice with zero Doppler frequency after normalized energy interpolation

    图 7  误差修正前后的结果对比

    Figure 7.  Comparison of results before and after error correction

    图 8  测量的平均海面高度(南大西洋海域)

    Figure 8.  Mean sea surface height measurement(South Atlantic)

    图 9  验证模型的平均海面高度(南大西洋海域)

    Figure 9.  Mean sea surface height of verification model(South Atlantic)

    图 10  反演得到的全球平均海面高度误差统计

    Figure 10.  Error statistics of global average sea surface height obtained by retrieval

    表  1  TDS-1卫星参数

    Table  1.   Parameters of satellite TDS-1

    参数 数值
    天线极化 天顶天线(L1/L2)、天底天线
    采样率/MHz 16.367
    轨道高度/km 635
    轨道倾角/(°) 98.4
    下载: 导出CSV

    表  2  误差因素及补正方法

    Table  2.   Error factors and correction methods

    误差项 延迟误差绝对值/m 补正方法
    电离层 < 15 国际参考电离层模型
    对流层 < 7 大气延迟模型
    天基线姿态误差 < 1 TDS-1 Metadata数据
    GPS卫星轨道误差 < 3 SP3精密星历
    TDS-1卫星轨道误差 < 2 TDS-1 Metadata数据
    反射信号延迟误差 < 10 反射信号几何模型
    TDS-1卫星数据偏差 < 50 TDS-1 Metadata数据
    海面粗糙度 < 10 HALF方法
    下载: 导出CSV

    表  3  筛选参数及范围

    Table  3.   Filter parameters and scope

    参数 保留数据范围
    信噪比/dB >-5
    天线增益/dB >5
    仰角/(°) >60
    下载: 导出CSV
  • [1] 孙剑. GNSS-R海洋反射接收机的控制设计及实现[D]. 北京: 中国科学院空间科学与应用研究中心, 2010: 2-5.

    SUN J. Design and realization of control system for the GNSS-R receiver[D]. Beijing: Center for Space Science and Applied Research, Chinese Academy of Sciences, 2010: 2-5(in Chinese).
    [2] MARTIN-NEIRA M. A pasive reflectometry and interfeometry system (PARIS) application to ocean altimetry[J]. ESA Journal, 1993, 17(4): 331-355.
    [3] PARK H, VALENCIA E, CAMPS A, et al. Delay tracking in spaceborne GNSS-R ocean altimetry[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1): 57-61. doi: 10.1109/LGRS.2012.2192255
    [4] 张云, 谢向芳, 孟婉婷, 等. 基于北斗GEO卫星反射信号的渤海海冰检测[J]. 北京航空航天大学学报, 2018, 44(2): 257-263. doi: 10.13700/j.bh.1001-5965.2017.0149

    ZHANG Y, XIE X F, MENG W T, et al. Bohai coastal sea ice detection using BeiDou GEO satellite reflected signals[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 257-263(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0149
    [5] ZHANG Y, TIAN L M, MENG W T, et al. Feasibility of code-level altimetry using coastal BeiDou reflection (BeiDou-R) setups[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 4130-4140. doi: 10.1109/JSTARS.2015.2446684
    [6] ZHANG Y, LI B B, TIAN L M, et al. Phase altimetry using reflected signals from BeiDou GEO satellites[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(10): 1-5. doi: 10.1109/LGRS.2016.2596724
    [7] 刘风玲, 张云, 孟婉婷, 等. UK-DMC卫星接收机GNSS反射信号的应用分析[J]. 遥感信息, 2015, 30(1): 90-95. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXX201501015.htm

    LIU F L, ZHANG Y, MENG W T, et al. Application analysis of airborne GNSS reflected data from UK-DMC satellite receiver[J]. Remote Sensing Information, 2015, 30(1): 90-95(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YGXX201501015.htm
    [8] CLARIZIA M P, RUF C, CIPOLLINI P, et al. First spaceborne observation of sea surface height using GPS-reflectometry[J]. Geophysical Research Letters, 2016, 43(2): 767-774. doi: 10.1002/2015GL066624
    [9] MASHBURN J, AXELRAD P, LOWE S T, et al. Global ocean altimetry with GNSS reflections from TechDemoSat-1[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(7): 4088-4097. doi: 10.1109/TGRS.2018.2823316
    [10] LI W Q, CARDELLACH E, FABRA F, et al. Assessment of spaceborne GNSS-R ocean altimetry performance using CYGNSS mission raw data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1): 238-250. doi: 10.1109/TGRS.2019.2936108
    [11] XU L W, WAN W, CHEN X W, et al. Spaceborne GNSS-R observation of global lake level: First results from the TechDemoSat-1 mission[J]. Remote Sensing, 2019, 11(12): 1438. doi: 10.3390/rs11121438
    [12] 张云, 张杨阳, 孟婉婷, 等. 机载GNSS反射信号海面测高模型的研究[J]. 海洋学报, 2020, 42(3): 149-156. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC202003014.htm

    ZHANG Y, ZHANG Y Y, MENG W T, et al. Research on sea surface altimetry model of airborne GNSS reflected signal[J]. Acta Oceanologica Sinica, 2020, 42(3): 149-156(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC202003014.htm
    [13] JALES P. MERRByS product manual-GNSS reflectometry on TDS-1 with the SGRReSI V4[EB/OL]. (2018-01-02)[2020-07-01]. http://merrbys.co.uk/resources/documentation.
    [14] GARRISON J L, KATZBERG S J. The application of reflected GPS signals to ocean remote sensing[J]. Remote Sensing of Environment, 2000, 73(2): 175-187. doi: 10.1016/S0034-4257(00)00092-4
    [15] BILITZA D. The international reference ionosphere-status 2013[J]. Advances in Space Research, 2015, 55(8): 1914-1927. doi: 10.1016/j.asr.2014.07.032
    [16] NIELL A E. Global mapping functions for the atmosphere delay at radio wavelengths[J]. Journal of Geophysical Research Solid Earth, 1996, 101(B2): 3227-3246. doi: 10.1029/95JB03048
    [17] DOW J M, NEILAN R E, RIZOS C. The international GNSS service in a changing landscape of global navigation satellite systems[J]. Journal of Geodesy, 2009, 83(3-4): 191-198. doi: 10.1007/s00190-008-0300-3
    [18] HU C J, BENSON C R, RIZOS C, et al. Impact of receiver dynamics on space-based GNSS-R altimetry[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(6): 1974-1980. doi: 10.1109/JSTARS.2019.2910544
    [19] ANDERSEN O B. The DTU10 gravity field and mean sea surface[C]//Second International Symposium of the Gravity Field of the Earth (IGFS2), 2010.
    [20] MASHBURN J, AXELRAD P, LOWE S T, et al. An assessment of the precision and accuracy of altimetry retrievals for a Monterey Bay GNSS-R experiment[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(10): 4660-4668. doi: 10.1109/JSTARS.2016.2537698
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  753
  • HTML全文浏览量:  171
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-24
  • 录用日期:  2020-10-16
  • 网络出版日期:  2021-10-20

目录

    /

    返回文章
    返回
    常见问答