留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

翼型近波浪水面气动特性研究

胡浩德 马东立 杨穆清 郭阳

胡浩德, 马东立, 杨穆清, 等 . 翼型近波浪水面气动特性研究[J]. 北京航空航天大学学报, 2021, 47(12): 2521-2532. doi: 10.13700/j.bh.1001-5965.2020.0448
引用本文: 胡浩德, 马东立, 杨穆清, 等 . 翼型近波浪水面气动特性研究[J]. 北京航空航天大学学报, 2021, 47(12): 2521-2532. doi: 10.13700/j.bh.1001-5965.2020.0448
HU Haode, MA Dongli, YANG Muqing, et al. Aerodynamic characteristics of airfoil near wavy water surface[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2521-2532. doi: 10.13700/j.bh.1001-5965.2020.0448(in Chinese)
Citation: HU Haode, MA Dongli, YANG Muqing, et al. Aerodynamic characteristics of airfoil near wavy water surface[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2521-2532. doi: 10.13700/j.bh.1001-5965.2020.0448(in Chinese)

翼型近波浪水面气动特性研究

doi: 10.13700/j.bh.1001-5965.2020.0448
详细信息
    通讯作者:

    杨穆清, E-mail: qingfengrumu@163.com

  • 中图分类号: V221+.3;TB553

Aerodynamic characteristics of airfoil near wavy water surface

More Information
  • 摘要:

    采用求解Navier-Stokes方程的数值方法研究了翼型NACA4412近距离经过波浪水面时的气动特性。对数值方法的准确性进行了验证。计算了翼型经过波浪水面和固壁波浪地面2种边界条件下的气动力系数,并进行了对比。研究结果表明:翼型在经过波浪水面时气动力系数会发生周期性的变化,与固壁波浪的情况相比,气动力的变化曲线存在显著差异,波动幅度更大。通过对流场结构的分析,发现了翼型和波浪水面之间的作用机理。波浪水面的质点存在竖直方向上的运动,在小地面间隙时,水面质点向上运动会挤压翼型和水面之间的空气,从而造成翼型气动力大幅波动。同时解释了来流速度越大,气动力系数波动幅度减小的原因。

     

  • 图 1  计算域

    Figure 1.  Computing domain

    图 2  网格划分

    Figure 2.  Grid generation

    图 3  压力系数的计算值和试验值对比

    Figure 3.  Comparison of computed and experimental pressure coefficient

    图 4  波形计算结果与理论结果对比

    Figure 4.  Comparison of calculated and theoretical results of waveform

    图 5  不同来流速度下2个周期内气动力系数变化

    Figure 5.  Variation of aerodynamic coefficient in two cycles at different velocities

    图 6  气动力系数随时间的变化曲线

    Figure 6.  Variation of aerodynamic coefficient with time

    图 7  不同时刻下翼型周围速度云图

    Figure 7.  Velocity contours around airfoil at different moments

    图 8  水面质点在水平和垂直方向上的运动速度

    Figure 8.  Horizontal and vertical velocity of particles on water surface

    图 9  不同时刻翼型表面压力系数分布

    Figure 9.  Pressure coefficient distribution on airfoil at different moments

    图 10  t*=0.8时刻翼型周围速度矢量图

    Figure 10.  Velocity vector around airfoil at t*=0.8

    图 11  t*=0.3时刻流管轮廓

    Figure 11.  Outline of flow tube at t*=0.3

    图 12  翼型下方水面质点垂直方向运动速度

    Figure 12.  Vertical velocity of particles on water surface below airfoil

    图 13  t*=0.8时刻翼型周围的压力云图

    Figure 13.  Pressure contour around airfoil at t*=0.8

    图 14  来流速度为100 m/s时2种边界条件的气动力系数对比

    Figure 14.  Comparison of aerodynamic coefficient between two boundary conditions at velocity of 100 m/s

    表  1  实验值与不同网格数量下的计算结果

    Table  1.   Calculation results with different grid numbers

    网格 网格数 Y+ 升力系数Cl 阻力系数Cd
    实验值 0.858 2 0.010 9
    疏网格 127 188 2 0.874 90 0.011 88
    中等网格 209 127 1 0.874 96 0.011 87
    密网格 311 121 0.5 0.874 66 0.011 78
    下载: 导出CSV

    表  2  不同来流速度对应的雷诺数和弗劳德数

    Table  2.   Re and Fr corresponding to different velocities

    来流速度/(m·s-1) Re/106 Fr
    30 1.0 13.5
    40 1.4 18.1
    50 1.7 22.6
    70 2.4 31.6
    100 3.4 45.2
    下载: 导出CSV
  • [1] ROZHDESTVENSKY K V. Wing-in-ground effect vehicles[J]. Progress in Aerospace Sciences, 2006, 42(3): 211-283. http://www.sciencedirect.com/science/article/pii/S0376042106000637
    [2] HSIUN C, CHEN C. Aerodynamic characteristics of a two-dimensional airfoil with ground effect[J]. Journal of Aircraft, 1996, 33(2): 386-392. doi: 10.2514/3.46949
    [3] OCKFEN A E, MATVEEV K I. Numerical study of wing aerodynamics in ground proximity[C]//ASME International Mechanical Engineering Congress and Exposition. New York: ASME Press, 2008: 97-103.
    [4] OCKFEN A E, MATVEEV K I. Aerodynamic characteristics of NACA 4412 airfoil section with flap in extreme ground effect[J]. International Journal of Naval Architecture and Ocean Engineering, 2009, 1(1): 1-12. doi: 10.2478/IJNAOE-2013-0001
    [5] JUNG J H, KIM M J, YOON H S, et al. Endplate effect on aerodynamic characteristics of three-dimensional wings in close free surface proximity[J]. International Journal of Naval Architecture and Ocean Engineering, 2012, 4(4): 477-487. doi: 10.2478/IJNAOE-2013-0112
    [6] JAMEI S, MAIMUN A, MANSOR S, et al. Numerical investigation on aerodynamic characteristics of a compound wing-in-ground effect[J]. Journal of Aircraft, 2012, 49(5): 1297-1305. doi: 10.2514/1.C031627
    [7] QU Q, XI J, WANG W, et al. Numerical study of the aerodynamics of a NACA 4412 airfoil in dynamic ground effect[J]. Aerospace Science and Technology, 2014, 38: 56-63. doi: 10.1016/j.ast.2014.07.016
    [8] QU Q, WANG W, LIU P, et al. Airfoil aerodynamics in ground effect for wide range of angles of attack[J]. AIAA Journal, 2015, 53(4): 1048-1061. doi: 10.2514/1.J053366
    [9] BARBER T. A study of water surface deformation due to tip vortices of a wing-in-ground effect[J]. Journal of Ship Research, 2007, 51(2): 182-186. doi: 10.5957/jsr.2007.51.2.182
    [10] ZONG Z, LIANG H, ZHOU L. Lifting line theory for wing-in-ground effect in proximity to a free surface[J]. Journal of Engineering Mathematics, 2012, 74(1): 143-158. doi: 10.1007/s10665-011-9497-x
    [11] LIANG H, ZHOU L, ZONG Z, et al. An analytical investigation of two-dimensional and three-dimensional biplanes operating in the vicinity of a free surface[J]. Journal of Marine Science and Technology, 2013, 18(1): 12-31. doi: 10.1007/s00773-012-0187-9
    [12] BAL S. Free surface effects on 2-D airfoils and 3-D wings moving over water[J]. Ocean Systems Engineering, 2016, 6(3): 245-264. doi: 10.12989/ose.2016.6.3.245
    [13] 米百刚, 詹浩. 近地、水面时的飞行器动态稳定特性数值模拟[J]. 船舶力学, 2017, 21(11): 1348-1355. doi: 10.3969/j.issn.1007-7294.2017.11.004

    MI B G, ZHAN H. Numerical simulation of aircraft dynamic stability characteristics flying over ground and water surface[J]. Journal of Ship Mechanics, 2017, 21(11): 1348-1355(in Chinese). doi: 10.3969/j.issn.1007-7294.2017.11.004
    [14] IM Y, CHANG K. Unsteady aerodynamics of a wing-in-ground effect airfoil flying over a wavy wall[J]. Journal of Aircraft, 2000, 37(4): 690-696. doi: 10.2514/2.2653
    [15] QU Q, LU Z, LIU P, et al. Numerical study of aerodynamics of a wing-in-ground effect craft[J]. Journal of Aircraft, 2014, 51(3): 913-924. doi: 10.2514/1.C032531
    [16] GAO B, QU Q, AGARWAL R K. Aerodynamics of a transonic airfoil above wavy ground[C]//AIAA Aerospace Sciences Meeting. Reston: AIAA, 2018: 1784.
    [17] LEE T, TREMBLAYDIONNE V. Experimental investigation of the aerodynamics and flowfield of a NACA 0015 airfoil over a wavy ground[J]. Journal of Fluids Engineering-Transactions of the ASME, 2018, 140(7): 71202. doi: 10.1115/1.4039236
    [18] TREMBLAYDIONNE V, LEE T. Effect of trailing-edge flap deflection on a symmetric airfoil over a wavy ground[J]. Journal of Fluids Engineering-Transactions of the ASME, 2019, 141(6): 64501. http://www.onacademic.com/detail/journal_1000041629480199_b749.html
    [19] ZHI H, XIAO T, CHEN J, et al. Numerical analysis of aerodynamics of a NACA4412 airfoil above wavy water surface[C]//AIAA Aviation 2019 Forum. Reston: AIAA, 2019: 3694.
    [20] FIROOZ A, GADAMI M. Turbulence flow for NACA 4412 in unbounded flow and ground effect with different turbulence models and two ground conditions: Fixed and moving ground conditions[C]//International Conference on Boundary and Interior Layers, 2006, 98: 161-164.
    [21] AHMED M R, TAKASAKI T, KOHAMA Y. Aerodynamics of a NACA4412 airfoil in ground effect[J]. AIAA Journal, 2007, 45(1): 37-47. doi: 10.2514/1.23872
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  206
  • HTML全文浏览量:  46
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-24
  • 录用日期:  2021-01-29
  • 网络出版日期:  2021-12-20

目录

    /

    返回文章
    返回
    常见问答