北京航空航天大学学报 ›› 2021, Vol. 47 ›› Issue (3): 461-468.doi: 10.13700/j.bh.1001-5965.2020.0456

• 论文 • 上一篇    下一篇

融合深度特征的输电线路金具缺陷因果分类方法

赵振兵1, 张薇1, 戚银城1, 翟永杰2, 赵文清2   

  1. 1. 华北电力大学 电气与电子工程学院, 保定 071003;
    2. 华北电力大学 控制与计算机工程学院, 保定 071003
  • 收稿日期:2020-08-24 发布日期:2021-04-08
  • 通讯作者: 赵振兵 E-mail:zhaozhenbing@ncepu.edu.cn
  • 作者简介:赵振兵,男,博士,副教授,硕士生导师。主要研究方向:电力视觉检测;张薇,女,硕士研究生。主要研究方向:目标检测与图像处理;戚银城,男,博士,教授,硕士生导师。主要研究方向:电力系统通信与信息处理。
  • 基金资助:
    国家自然科学基金(61871182,61773160);北京市自然科学基金(4192055);河北省自然科学基金(F2020502009);中央高校基本科研业务费专项资金(2018MS095,2020YJ006);模式识别国家重点实验室开放课题基金(201900051)

Causal classification method of transmission lines fitting defect combined with deep features

ZHAO Zhenbing1, ZHANG Wei1, QI Yincheng1, ZHAI Yongjie2, ZHAO Wenqing2   

  1. 1. School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China;
    2. School of Control and Computer Engineering, North China Electric Power University, Baoding 071003, China
  • Received:2020-08-24 Published:2021-04-08
  • Supported by:
    National Natural Science Foundation of China (61871182,61773160); Beijing Natural Science Foundation (4192055); Natural Science Foundation of Hebei Province (F2020502009); the Fundamental Research Funds for the Central Universities (2018MS095,2020YJ006); Open Project Program of the National Laboratory of Pattern Recognition (201900051)

摘要: 针对输电线路金具缺陷样本不足和缺陷目标形态多样化,仅仅利用深度学习模型导致金具缺陷分类准确率较低的问题,提出了一种结合深度网络和逻辑回归模型的因果分类方法。首先,通过样本扩充方法获得数量丰富化和角度多样化的数据集;然后,基于微调后的VGG16模型提取深度特征并进行特征处理,以构建符合因果关系学习的输入特征集;最后,通过全局混杂平衡进行金具缺陷特征与标签之间的因果关系学习,构建符合金具特点的因果逻辑回归模型,完成金具缺陷分类。为了证明所提方法的有效性,利用无人机实际采集的4类金具缺陷图片分别进行了实验,所使用的训练样本和测试样本数量较原始数据集提升了5倍左右。实验结果表明:所提方法可以实现对输电线路金具缺陷的精准分类,其中,防震锤相交和变形分类准确率分别达到了0.929 9和0.911 8,屏蔽环锈蚀和均压环损坏分类准确率分别达到了0.956 7和0.966 9。

关键词: 输电线路金具缺陷, 因果关系学习, 深度特征, 逻辑回归模型, VGG

Abstract: Aimed at the insufficient transmission lines fitting defect samples and diverse defect target shapes, a causal classification method combining deep network and logistic regression model is proposed to solve low defect classification accuracy when only using deep learning models. Firstly, rich and diverse datasets are obtained through the sample expansion method. Secondly, deep features are extracted based on the fine-tuned VGG16 model, and processed to construct an input feature set that conforms to causality learning. Finally, the causal relationship between fitting defect feature and label is learned through the global balance, and a causal logistic regression model is constructed to complete the classification of the fitting defects. Four types of fitting defect images collected by UAV are used respectively in the experiments to prove the effectiveness of the proposed method. The number of training and testing samples used is about 5 times higher than the original dataset. The experimental results show the proposed method can realize the accurate classification of the fitting defects, the classification accuracy of the shockproof hammer intersection and deformation reach 0.929 9 and 0.911 8 respectively, and the classification accuracy of the shielding ring corrosion and the grading ring damage reach 0.956 7 and 0.966 9 respectively.

Key words: transmission line fitting defect, causality learning, deep features, logistic regression model, VGG

中图分类号: 


版权所有 © 《北京航空航天大学学报》编辑部
通讯地址:北京市海淀区学院路37号 北京航空航天大学学报编辑部 邮编:100191 E-mail:jbuaa@buaa.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发