留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

前体尾流对降落伞工作性能的影响

吴卓恒 余莉 赵晓舜 聂舜臣

吴卓恒, 余莉, 赵晓舜, 等 . 前体尾流对降落伞工作性能的影响[J]. 北京航空航天大学学报, 2021, 47(12): 2552-2559. doi: 10.13700/j.bh.1001-5965.2020.0465
引用本文: 吴卓恒, 余莉, 赵晓舜, 等 . 前体尾流对降落伞工作性能的影响[J]. 北京航空航天大学学报, 2021, 47(12): 2552-2559. doi: 10.13700/j.bh.1001-5965.2020.0465
WU Zhuoheng, YU Li, ZHAO Xiaoshun, et al. Effects of capsule wake on parachute working performance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2552-2559. doi: 10.13700/j.bh.1001-5965.2020.0465(in Chinese)
Citation: WU Zhuoheng, YU Li, ZHAO Xiaoshun, et al. Effects of capsule wake on parachute working performance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2552-2559. doi: 10.13700/j.bh.1001-5965.2020.0465(in Chinese)

前体尾流对降落伞工作性能的影响

doi: 10.13700/j.bh.1001-5965.2020.0465
基金项目: 

国家自然科学基金 11972192

详细信息
    通讯作者:

    余莉, E-mail: yuli_happy@nuaa.edu.cn

  • 中图分类号: V244.21

Effects of capsule wake on parachute working performance

Funds: 

National Natural Science Foundation of China 11972192

More Information
  • 摘要:

    为研究前体尾流对降落伞工作性能的非定常影响,基于Realizablek-ε湍流模型采用PISO算法开展了物伞系统的非定常绕流数值计算,获得了精细的流场旋涡结构。在此基础上,研究了不同拖曳比下物伞系统的尾涡演变规律、流场分布规律以及伞衣气动特性变化。结果表明:前体尾涡导致伞衣入口处的涡量大小和方向时刻变化,随拖曳比增加,涡量黏性耗散增强,进入伞衣的旋涡强度逐渐减弱,伞衣入口形成稳定的负涡量区,伞衣尾涡脱离周期随之延长;拖曳比对尾涡区后端(伞衣入口处)流场压力的影响远大于前端,随拖曳比增加,流动形式逐渐由闭式转变为开式,流场的速度分布和压力分布更为对称,伞衣入口形成稳定的正压区,内外压差增加;当拖曳比大于9时,前体尾流对降落伞阻力系数和表面压强系数的影响减小。

     

  • 图 1  伞衣平面结构参数[18]

    Figure 1.  Planar structure parameters of canopy[18]

    图 2  伞衣充满外形和计算网格

    Figure 2.  Full shape of canopy and computational grid

    图 3  降落伞尾涡结构

    Figure 3.  Parachute wake vortex structure

    图 4  物伞系统三维模型

    Figure 4.  3-D model of capsule-parachute system

    图 5  物伞系统数值模型

    Figure 5.  Numerical model of capsule-parachute system

    图 6  流场旋涡演变规律

    Figure 6.  Variation rule of flow field vortex

    图 7  物伞尾涡脱离周期和平均涡核涡量

    Figure 7.  Wake vortex departure period and average vorticity magnitude of capsule-parachute system

    图 8  伞衣入口处旋涡强度变化

    Figure 8.  Variation of vorticity magnitude at the entrance of canopy

    图 9  物伞系统流场图(t=15 s)

    Figure 9.  Flow field of capsule-parachute system(t=15 s)

    图 10  流场压力变化

    Figure 10.  Variation of flow field pressure

    图 11  伞衣沿子午线上的内外压力及压强系数分布

    Figure 11.  Internal and external pressure and pressure intensity coefficient distribution along the meridian of canopy

    图 12  阻力系数随时间的变化

    Figure 12.  Variation of drag coefficient with time

    图 13  平均阻力系数随拖曳比的变化

    Figure 13.  Variation of average drag coefficient with drag ratio

    表  1  数值计算结果

    Table  1.   Numerical calculation results

    湍流模型 平均阻力系数CD 物理时长/s 计算时长/h 试验相对误差/%
    Standard k-ε 0.732 8 5 -10.73
    Realizable k-ε 0.781 8 8.5 -4.76
    下载: 导出CSV
  • [1] STEINBERG S Y, SIEMERS P M, SLAYMAN R G. Development of the viking parachute configuration by wind-tunnel investigation[J]. Journal of Spacecraft and Rockets, 1973, 11(2): 101-107. http://www.onacademic.com/detail/journal_1000037359872410_dbea.html
    [2] 韩晋阳, 徐宏, 高峰. 超声速半流伞设计与分析[J]. 航天返回与遥感, 2013, 34(5): 20-28. doi: 10.3969/j.issn.1009-8518.2013.05.004

    HAN J Y, XU H, GAO F. Design and analysis of supersonic half-flow parachute[J]. Spacecraft Recovery and Remote Sensing, 2013, 34(5): 20-28(in Chinese). doi: 10.3969/j.issn.1009-8518.2013.05.004
    [3] SENGUPTA A. Fluid structure interaction of parachutes in supersonic planetary entry[C]//21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2011.
    [4] SENGUPTA A, KELSCH R. Supersonic performance of disk-gap-band parachutes constrained to a 0-degree trim angle[J]. Journal of Spacecraft and Rockets, 2009, 46(6): 1155-1163. doi: 10.2514/1.41223
    [5] SENGUPTA A, STELZNER A. Findings from the supersonic qualification program of the mars science laboratory parachute system[C]//20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2009.
    [6] 贾贺, 姜璐璐, 薛晓鹏, 等. 超声速透气降落伞系统的气动干扰数值模拟研究[J]. 航天返回与遥感, 2019, 40(6): 26-34. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201906005.htm

    JIA H, JIANG L L, XUE X P, et al. Numerical simulation of aerodynamic interaction of supersonic porosity parachutes[J]. Spacecraft Recovery and Remote Sensing, 2019, 40(6): 26-34(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG201906005.htm
    [7] 王侃, 曹义华, 于子文, 等. 降落伞流固耦合问题的数值模拟和流场分析[J]. 北京航空航天大学学报, 2007, 33(9): 1029-1032. doi: 10.3969/j.issn.1001-5965.2007.09.007

    WANG K, CAO Y H, YU Z W, et al. Numerical simulation of parachute fluid-solid coupling problem and flow analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(9): 1029-1032(in Chinese). doi: 10.3969/j.issn.1001-5965.2007.09.007
    [8] 王祁, 曹义华. 盘-缝-带伞超声速充气过程仿真研究[J]. 航天返回与遥感, 2018, 39(1): 35-44. doi: 10.3969/j.issn.1009-8518.2018.01.005

    WANG Q, CAO Y H. Study on the simulation of the inflating process of disk-gap-band parachute in supersonic flow[J]. Spacecraft Recovery and Remote Sensing, 2018, 39(1): 35-44(in Chinese). doi: 10.3969/j.issn.1009-8518.2018.01.005
    [9] 宁雷鸣. 物-伞系统动力学高保真数值仿真技术及流固耦合算法研究[D]. 南京: 南京航空航天大学, 2018.

    NING L M. High-fidelity flight simulation of parachute-payload system: The multibody dynamics approach and fluid-structure interaction approach[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018(in Chinese).
    [10] 张思宇, 余莉, 刘鑫. 翼伞充气过程的流固耦合方法数值仿真[J]. 北京航空航天大学学报, 2020, 46(6): 1108-1115. doi: 10.13700/j.bh.1001-5965.2019.0408

    ZHANG S Y, YU L, LIU X. Numerical simulation of parafoil inflation process based on fluid-structure interaction method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1108-1115(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0408
    [11] YANG X, YU L, SHEN C, et al. Numerical simulation of the supersonic disk-gap-band parachute by using implicit coupling method [J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2017, 18(5): 343-349. doi: 10.1515/ijnsns-2016-0047
    [12] YU L, SHI X L, MING X. Numerical simulation of parachute during opening process[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(1): 52-57. http://www.cnki.com.cn/Article/CJFDTotal-HKXB200701008.htm
    [13] YANG X, YU L. Fluid-structure interaction study of the supersonic parachute using large-eddy simulation[J]. Engineering Computations, 2018, 35(3): 157-168. doi: 10.1108/EC-06-2016-0195
    [14] LINGARD J, DARLEY M. Simulation of parachute fluid structure interaction in supersonic flow[C]//18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2005.
    [15] LINGARD J, DARLEY M, UNDERWOOD J C, et al. Simulation of mars supersonic parachute performance and dynamics[C]// 19th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2007.
    [16] XUE X, NAKAMURA Y. Numerical simulation of a three-dimensional flexible parachute system under supersonic conditions[J]. Transaction of the Japan Society for Aeronautical and Space Sciences, 2013, 11: 99-108. http://www.onacademic.com/detail/journal_1000040517144010_7dae.html
    [17] 薛晓鹏, 温志湧. 超声速降落伞系统的气动干扰数值模拟研究[J]. 航天返回与遥感, 2016, 37(3): 9-18. doi: 10.3969/j.issn.1009-8518.2016.03.002

    XUE X P, WEN Z Y. Numerical simulation of aerodynamic iteraction of supersonic parachute system[J]. Spacecraft Recovery and Remote Sensing, 2016, 37(3): 9-18(in Chinese). doi: 10.3969/j.issn.1009-8518.2016.03.002
    [18] TUTT B A. Fluid structure interaction parachute benchmark models in LS-DYNA[C]//AIAA Aerodynamic Decelerator Systems Conference. Reston: AIAA, 2013.
    [19] 杨雪, 余莉, 李允伟, 等. 环帆伞稳降阶段织物透气性影响数值模拟[J]. 空气动力学学报, 2015, 33(5): 714-719. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201505021.htm

    YANG X, YU L, LI Y W, et al. Numerical simulation of the effect of the permeability on the ringsail parachute in terminal descent stage[J]. Acta Aerodynamica Sinica, 2015, 33(5): 714-719(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201505021.htm
    [20] 王利荣. 降落伞理论与应用[M]. 北京: 航宇出版社, 1997: 79-82.

    WANG L R. Parachute theory and application[M]. Beijing: Aerospace Publishing Press, 1997: 79-82(in Chinese).
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  235
  • HTML全文浏览量:  26
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-26
  • 录用日期:  2020-11-06
  • 网络出版日期:  2021-12-20

目录

    /

    返回文章
    返回
    常见问答