留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空中交通CPS级联失效与缓解策略

王兴隆 贺敏 刘明学

王兴隆, 贺敏, 刘明学等 . 空中交通CPS级联失效与缓解策略[J]. 北京航空航天大学学报, 2021, 47(12): 2426-2433. doi: 10.13700/j.bh.1001-5965.2020.0466
引用本文: 王兴隆, 贺敏, 刘明学等 . 空中交通CPS级联失效与缓解策略[J]. 北京航空航天大学学报, 2021, 47(12): 2426-2433. doi: 10.13700/j.bh.1001-5965.2020.0466
WANG Xinglong, HE Min, LIU Mingxueet al. Air traffic CPS cascading failure and mitigation strategy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2426-2433. doi: 10.13700/j.bh.1001-5965.2020.0466(in Chinese)
Citation: WANG Xinglong, HE Min, LIU Mingxueet al. Air traffic CPS cascading failure and mitigation strategy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2426-2433. doi: 10.13700/j.bh.1001-5965.2020.0466(in Chinese)

空中交通CPS级联失效与缓解策略

doi: 10.13700/j.bh.1001-5965.2020.0466
基金项目: 

国家重点研发计划 2020YFB1600101

天津市教委科研计划 2020ZD01

详细信息
    通讯作者:

    王兴隆. E-mail: xinglong1979@163.com

  • 中图分类号: U8;V355.2

Air traffic CPS cascading failure and mitigation strategy

Funds: 

National Key R & D Program of China 2020YFB1600101

Scientific Research Project of Tianjin Educational Committee 2020ZD01

More Information
  • 摘要:

    为有效缓解空中交通级联失效,改进传统负载-容量模型,并发现容量调节参数存在级联失效临界值;建立空中交通物理信息系统(CPS)模型,定义节点正常、拥堵和失效3种工作状态,提出度分配、介数中心性分配和剩余容量分配等节点流量分配策略,以此缓解航路网和管制网的级联失效,建立网络正常率指标来评估策略实施效果。以中国华东地区空中交通CPS为实例分析,结果表明:在节点介数中心性分配策略下,网络抵御级联失效的能力较强,最先从崩溃状态开始恢复;节点剩余容量分配策略下,各节点可以充分发挥接收额外流量的作用,网络级联失效最早恢复至正常状态,缓解效果较好。

     

  • 图 1  空中交通CPS网络模型

    Figure 1.  Air traffic CPS network model

    图 2  空中交通CPS级联失效影响关系

    Figure 2.  Effect and relationship of air traffic CPS cascading failure

    图 3  空中交通CPS级联失效过程

    Figure 3.  Process of air traffic CPS cascading failure

    图 4  级联失效缓解流程

    Figure 4.  Cascading failure mitigation procedure

    图 5  华东地区空中交通CPS模型

    Figure 5.  East China air traffic CPS model

    图 6  不同缓解策略下航路网级联失效缓解程度

    Figure 6.  Mitigation degree of cascading failures of air route network under different mitigation strategies

    图 7  不同缓解策略下管制网级联失效缓解程度

    Figure 7.  Mitigation degree of cascading failures of air traffic control network under different mitigation strategies

    表  1  不同缓解策略中ff'计算公式

    Table  1.   f and f' calculation formula in different mitigation strategies

    缓解策略 f f'
    度分配
    介数中心性分配
    剩余容量分配
    下载: 导出CSV
  • [1] 汤奕, 王琦, 倪明, 等. 电力信息物理融合系统中的网络攻击分析[J]. 电力系统自动化, 2016, 40(6): 148-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXT201606024.htm

    TANG Y, WANG Q, NI M, et al. Analysis of cyber attacks in cyber physical power system[J]. Automation of Electric Power Systems, 2016, 40(6): 148-151(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLXT201606024.htm
    [2] 方宇恒, 徐中伟, 彭聪. 信息物理融合系统环境下轨道交通信号安全控制规划研究[J]. 城市轨道交通研究, 2018, 21(4): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201804008.htm

    FANG Y H, XU Z W, PENG C. Study on the planning of rail transit safety signal control in CPS[J]. Urban Mass Transit, 2018, 21(4): 25-30(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201804008.htm
    [3] 谭鹏. 基于T-CPS的螺旋道路车车协同模型及稳定性研究[D]. 重庆: 重庆大学, 2019.

    TAN P. Research on vehicle-vehicle cooperative model and its stability on a spiral road based on T-CPS[D]. Chongqing: Chongqing University, 2019(in Chinese).
    [4] LEVSHUN D, KOTENKO I, CHECHULIN A. The application of the methodology for secure cyber-physical systems design to improve the semi-natural model of the railway infrastructure[J]. Microprocessors and Microsystems, 2021, 87: 103482. doi: 10.1016/j.micpro.2020.103482
    [5] SAMPIGETHAYA K, POOVENDRAN R. Aviation cyber-physical systems: Foundations for future aircraft and air transport[J]. Proceedings of the IEEE, 2013, 101(8): 1834-1855. doi: 10.1109/JPROC.2012.2235131
    [6] REN L, LIAO H, CASTILLO-EFFEN M, et al. Transformation of mission-critical applications in aviation to cyber-physical systems[M]//SONG H B, RAWAT D B, JESCHKE S. Cyber-physical systems: Foundations, principles and applications. Amsterdam: Elsevier, 2017: 339-362.
    [7] 王兴隆, 苗尚飞, 贺敏, 等. 基于改进K-shell算法的空中交通信息物理系统节点排序[J]. 中国科技论文, 2020, 15(10): 1144-1149. doi: 10.3969/j.issn.2095-2783.2020.10.008

    WANG X L, MIAO S F, HE M, et al. Node ranking of air traffic information physical system based on improved K-shell algorithm[J]. China Sciencepaper, 2020, 15(10): 1144-1149(in Chinese). doi: 10.3969/j.issn.2095-2783.2020.10.008
    [8] 种鹏云. 基于复杂网络的危险品运输网络拓扑特性、级联失效机制及抗毁性研究[D]. 成都: 西南交通大学, 2015.

    ZHONG P Y. Topology properties, mechanism of cascading failure and invulnerability for hazardous materials transportation network based on complex network[D]. Chengdu: Southwest Jiaotong University, 2015(in Chinese).
    [9] 崔梦頔. 无标度网络级联失效缓解策略研究[D]. 秦皇岛: 燕山大学, 2018: 19-37.

    CUI M D. Research on a mitigation strategy for scale-free network against cascading failures[D]. Qinhuangdao: Yanshan University, 2018: 19-37(in Chinese).
    [10] 齐雁楠, 高经东. 域扇区网络级联失效抗毁性及优化策略[J]. 航空学报, 2018, 39(12): 322579. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201812031.htm

    QI Y N, GAO J D. Cascading failure invulnerability and optimization strategy of airspace sector network[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 322579(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201812031.htm
    [11] BAHETI R, GILL H. Cyber-physical systems[J]. The Impact of Control Technology, 2011, 12(1): 161-166.
    [12] AMARAL L A N, SCALA A, BARTHELEMY M, et al. Classes of small-world networks[J]. PNAS, 2000, 97(21): 11149-11152. doi: 10.1073/pnas.200327197
    [13] 中国民用航空局. 中国民用航空规章. 第93部. 民用航空空中交通管理规则: CCAR-93TM-R5-2017[S]. 北京: 中国民用航空局, 2017.

    Civil Aviation Administration of China. China civil aviation regulations 93. Civil aviation air traffic management rules: CCAR-93TM-R5-2017[S]. Beijing: Civil Aviation Administration of China, 2017(in Chinese).
    [14] 王兴隆, 刘明学, 潘维煌. 空中交通信息物理系统的脆性分析[J]. 中国科技论文, 2019, 14(2): 164-168. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201902008.htm

    WANG X L, LIU M X, PAN W H. Analysis of the vulnerability of air traffic information physical systems[J]. China Sciencepaper, 2019, 14(2): 164-168(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201902008.htm
    [15] 王红勇, 温瑞英. 基于复杂网络的空中交通态势风险评估方法[J]. 中国安全科学学报, 2018, 28(5): 172-178. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201805029.htm

    WANG H Y, WEN R Y. Risk assessment method of air traffic situation based on complex network[J]. China Safety Science Journal, 2018, 28(5): 172-178(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201805029.htm
    [16] 高经东. 基于复杂网络的空域扇区网络分析及抗毁性研究[D]. 天津: 中国民航大学, 2018: 24-26.

    GAO J D. Analysis and invulnerability research of sectors network based on complex network[D]. Tianjin: Civil Aviation University of China, 2018: 24-26(in Chinese).
    [17] 窦炳琳, 张世永. 复杂网络上级联失效的负载容量模型[J]. 系统仿真学报, 2011, 23(7): 1459-1463. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201107035.htm

    DOU B L, ZHANG S Y. Load-capacity model for cascading failures of complex networks[J]. Journal of System Simulation, 2011, 23(7): 1459-1463(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201107035.htm
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  268
  • HTML全文浏览量:  38
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-27
  • 录用日期:  2020-11-06
  • 网络出版日期:  2021-12-20

目录

    /

    返回文章
    返回
    常见问答