留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于损伤力学的含预腐蚀损伤铝合金的疲劳寿命预测

詹志新 余洵 胡伟平 孟庆春

詹志新, 余洵, 胡伟平, 等 . 基于损伤力学的含预腐蚀损伤铝合金的疲劳寿命预测[J]. 北京航空航天大学学报, 2021, 47(12): 2434-2441. doi: 10.13700/j.bh.1001-5965.2020.0477
引用本文: 詹志新, 余洵, 胡伟平, 等 . 基于损伤力学的含预腐蚀损伤铝合金的疲劳寿命预测[J]. 北京航空航天大学学报, 2021, 47(12): 2434-2441. doi: 10.13700/j.bh.1001-5965.2020.0477
ZHAN Zhixin, YU Xun, HU Weiping, et al. Fatigue life prediction of aluminum alloy with pre-corrosion damage based on damage mechanics[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2434-2441. doi: 10.13700/j.bh.1001-5965.2020.0477(in Chinese)
Citation: ZHAN Zhixin, YU Xun, HU Weiping, et al. Fatigue life prediction of aluminum alloy with pre-corrosion damage based on damage mechanics[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2434-2441. doi: 10.13700/j.bh.1001-5965.2020.0477(in Chinese)

基于损伤力学的含预腐蚀损伤铝合金的疲劳寿命预测

doi: 10.13700/j.bh.1001-5965.2020.0477
基金项目: 

国家自然科学基金 12002011

广东省基础与应用基础研究基金 2019A1515110334

详细信息
    通讯作者:

    胡伟平. E-mail: huweiping@buaa.edu.cn

  • 中图分类号: O346.2;V215.5

Fatigue life prediction of aluminum alloy with pre-corrosion damage based on damage mechanics

Funds: 

National Natural Science Foundation of China 12002011

Basic and Applied Basic Research Foundation of Guangdong Province 2019A1515110334

More Information
  • 摘要:

    在工程结构中,腐蚀疲劳破坏是一种常见的现象,腐蚀坑处往往形成疲劳源,严重影响材料的疲劳特性。基于连续损伤力学理论,提出了含预腐蚀损伤铝合金疲劳寿命预测方法。首先,将腐蚀的影响分为2个方面,即腐蚀造成局部初始损伤和腐蚀形成的蚀坑造成局部应力集中;其次,建立了考虑预腐蚀损伤的疲劳损伤演化方程,并实现了相应的数值解法;然后,根据预腐蚀疲劳试验结果与数值计算结果,得到预腐蚀引起的材料初始损伤;最后,采用数值解法,对含预腐蚀坑的铝合金进行了寿命预估,并与试验结果进行对比,验证了所提方法的有效性。

     

  • 图 1  预腐蚀时间为0 h的疲劳试验结果

    Figure 1.  Fatigue experimental results when pre-corrosion time is 0 h

    图 2  预腐蚀时间为48 h的疲劳试验结果

    Figure 2.  Fatigue experimental results when pre-corrosion time is 48 h

    图 3  预腐蚀时间为120 h的疲劳试验结果

    Figure 3.  Fatigue experimental results when pre-corrosion time is 120 h

    图 4  预腐蚀时间为240 h的疲劳试验结果

    Figure 4.  Fatigue experimental results when pre-corrosion time is 240 h

    图 5  预腐蚀后试件的电镜扫描图[24]

    Figure 5.  Scanning electron microscopy photographs for pre-corroded specimens[24]

    图 6  含预腐蚀坑试件的有限元模型

    Figure 6.  Finite element model of specimen with corrosion pit

    图 7  损伤分布及应力演化趋势

    Figure 7.  Damage distribution and stress evolution trend

    图 8  不同预腐蚀时间下的预估疲劳寿命与试验中值寿命的对比

    Figure 8.  Comparison between predicted fatigue life and experimental median life under different pre-corrosion time

    图 9  损伤度及弹性模量的演化

    Figure 9.  Evolution of damage degree and elastic modulus

    表  1  2024铝合金的静力力学性能参数

    Table  1.   Static mechanical property parameters of 2024 aluminum alloy

    参数 数值
    E/GPa 72
    ν 0.3
    σs/MPa 380
    σu/MPa 458
    下载: 导出CSV

    表  2  标定的2024铝合金的疲劳损伤演化参数

    Table  2.   Calibrated fatigue damage evolution parameters of 2024 aluminum alloy

    参数 数值
    β 1.85
    M0 85 778
    b1 0.005
    b2 0.000 3
    a 0.7
    下载: 导出CSV

    表  3  不同预腐蚀时间下的2024铝合金的初始损伤度

    Table  3.   Initial damage degree of 2024 aluminum alloy under different pre-corrosion time

    腐蚀时间/h 初始损伤度
    48 0.02
    120 0.04
    240 0.1
    下载: 导出CSV
  • [1] SCHIJVE J. 结构与材料疲劳[M]. 吴学仁, 译. 北京: 航空工业出版社, 2014.

    SCHIJVE J. Fatigue of structures and materials[M]. WU X R, translated. Beijing: Aviation Industry Press, 2014(in Chinese).
    [2] 姚卫星. 结构疲劳寿命分析[M]. 北京: 国防工业出版社, 2003.

    YAO W X. Fatigue life analysis of structures[M]. Beijing: National Defense Industry Press, 2003(in Chinese).
    [3] CHEN Y J, LIU C C, ZHOU J, et al. Multiaxial fatigue behaviors of 2024-T4 aluminum alloy under different corrosion conditions[J]. International Journal of Fatigue, 2017, 98: 269-278. doi: 10.1016/j.ijfatigue.2017.02.004
    [4] 邓景辉, 陈平剑, 付裕. 用于预腐蚀航空铝合金材料疲劳寿命分析的腐蚀当量裂纹的抛物线模型[J]. 航空学报, 2018, 39(2): 146-156. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201802014.htm

    DENG J H, CHEN P J, FU Y. Parabolic model of equivalent crack approach for predicting fatigue life of pre-corroded aluminum alloy[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 146-156(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201802014.htm
    [5] CO N E C, BURNS J T. Effects of macro-scale corrosion damage feature on fatigue crack initiation and fatigue behavior[J]. International Journal of Fatigue, 2017, 103: 234-247. doi: 10.1016/j.ijfatigue.2017.05.028
    [6] 穆志韬, 陈定海, 朱做涛, 等. 腐蚀条件下LD2航空铝合金裂纹扩展规律研究[J]. 航空学报, 2013, 34(3): 574-579. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201303013.htm

    MU Z T, CHEN D H, ZHU Z T, et al. Fatigue crack growth behavior of aerospace aluminum alloy LD2 under corrosion[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3): 574-579(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201303013.htm
    [7] DENG L, YAN W, NIE L. A simple corrosion fatigue design method for bridges considering the coupled corrosion-overloading effect[J]. Engineering Structures, 2019, 178: 309-317. doi: 10.1016/j.engstruct.2018.10.028
    [8] 谭晓明, 张丹峰, 卞贵学, 等. 腐蚀对新型高强度铝合金疲劳裂纹萌生机制及扩展行为的作用[J]. 机械工程学报, 2014, 50(22): 76-83. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201422013.htm

    TAN X M, ZHANG D F, BIAN G X, et al. Effect of corrosion damage on fatigue crack initiation mechanism and growth behavior of high strength aluminum alloy[J]. Journal of Mechanical Engineering, 2014, 50(22): 76-83(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201422013.htm
    [9] EL MAY M, PALIN-LUC T, SAINTIER N, et al. Effect of corrosion on the high cycle fatigue strength of martensitic stainless steel X12CrNiMoV12-3[J]. International Journal of Fatigue, 2013, 47: 330-339. doi: 10.1016/j.ijfatigue.2012.09.018
    [10] 刘治国, 王海东, 贾明明. 航空铝合金点蚀形貌对应力集中系数影响量化分析[J]. 强度与环境, 2018, 45(1): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHJ201801005.htm

    LIU Z G, WANG H D, JIA M M. Quantitative influence analysis of aero aluminum alloy pitting corrosion morphology to stress concentration factor[J]. Structure & Environment Engineering, 2018, 45(1): 25-31(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QDHJ201801005.htm
    [11] WANG L, XIN J, CHENG L, et al. Influence of inclusions on initiation of pitting corrosion and stress corrosion cracking of X70 steel in near-neutral pH environment[J]. Corrosion Science, 2019, 147: 108-127. doi: 10.1016/j.corsci.2018.11.007
    [12] BURSTEIN G T, LIU C. Nucleation of corrosion pits in Ringer's solution containing bovine serum[J]. Corrosion Science, 2007, 49(11): 4296-4306. doi: 10.1016/j.corsci.2007.05.018
    [13] ARUNACHALAM S, FAWAZ S. Test method for corrosion pit-to-fatigue crack transition from a corner of hole in 7075-T651 aluminum alloy[J]. International Journal of Fatigue, 2016, 91: 50-58. doi: 10.1016/j.ijfatigue.2016.05.021
    [14] 崔泗鹏, 姚卫星, 夏天翔. 连接件振动疲劳寿命分析的名义应力法[J]. 中国机械工程, 2014, 25(18): 2519-2522. doi: 10.3969/j.issn.1004-132X.2014.18.020

    CUI S P, YAO W X, XIA T X. Nominal stress approach for fatigue life prediction of mutifastener joints under vibration loading[J]. China Mechanical Engineering, 2014, 25(18): 2519-2522(in Chinese). doi: 10.3969/j.issn.1004-132X.2014.18.020
    [15] AL ZAMZAMI I, SUSMEL L. On the accuracy of nominal, structural, and local stress based approaches in designing aluminium welded joints against fatigue[J]. International Journal of Fatigue, 2017, 101: 137-158. doi: 10.1016/j.ijfatigue.2016.11.002
    [16] SHANG D G, WANG D K, LI M, et al. Local stress-strain field intensity approach to fatigue life prediction under random cyclic loading[J]. International Journal of Fatigue, 2001, 23(10): 903-910. doi: 10.1016/S0142-1123(01)00051-2
    [17] SUSMEL L, TAYLOR D. A critical distance/plane method to estimate finite life of notched components under variable amplitude uniaxial/multiaxial fatigue loading[J]. International Journal of Fatigue, 2012, 38: 7-24. doi: 10.1016/j.ijfatigue.2011.11.015
    [18] PANDEY V B, SINGH I V, MISHRA B K, et al. A new framework based on continuum damage mechanics and XFEM for high cycle fatigue crack growth simulations[J]. Engineering Fracture Mechanics, 2019, 206: 172-200. doi: 10.1016/j.engfracmech.2018.11.021
    [19] LEMAITRE J. A course on damage mechanics[M]. Berlin: Springer, 2012.
    [20] ZHAN Z, HU W, MENG Q, et al. Continuum damage mechanics-based approach to the fatigue life prediction for 7050-T7451 aluminum alloy with impact pit[J]. International Journal of Damage Mechanics, 2016, 25(7): 943-966. doi: 10.1177/1056789515608232
    [21] LEMAITRE J, DESMORAT R. Engineering damage mechanics: Ductile, creep, fatigue and brittle failures[M]. Berlin: Spriner, 2005: 53-59.
    [22] CHABOCHE J, LESNE P. A nonlinear continuous fatigue damage model[J]. Fatigue & Fracture of Engineering Materials & Structures, 1988, 11(1): 1-17. http://ci.nii.ac.jp/naid/10009516125
    [23] CHAUDONNERET M. A simple and efficient multiaxial fatigue damage model for engineering applications of macro-crack initiation[J]. Journal of Engineering Materials and Technology, 1993, 115(4): 373-379. doi: 10.1115/1.2904232
    [24] HU W P, SHEN Q A, ZHANG M, et al. Corrosion-fatigue life prediction for 2024-T62 aluminum alloy using damage mechanics-based approach[J]. International Journal of Damage Mechanics, 2012, 21(8): 1245-1266. doi: 10.1177/1056789511432791
    [25] 张有宏, 吕国志, 陈跃良. LY12-CZ铝合金预腐蚀及疲劳损伤研究[J]. 航空学报, 2005, 26(6): 779-782. doi: 10.3321/j.issn:1000-6893.2005.06.024

    ZHANG Y H, LU G Z, CHEN Y L. Predicting fatigue life from pre-corroded LY12-CZ aluminium test[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(6): 779-782(in Chinese). doi: 10.3321/j.issn:1000-6893.2005.06.024
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  626
  • HTML全文浏览量:  255
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-31
  • 录用日期:  2020-11-05
  • 网络出版日期:  2021-12-20

目录

    /

    返回文章
    返回
    常见问答