留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

转盘轴承集聚效应分析及其对回转性能的影响

邓飙 陈渐伟 郭杨 唐圣金 陈威

邓飙, 陈渐伟, 郭杨, 等 . 转盘轴承集聚效应分析及其对回转性能的影响[J]. 北京航空航天大学学报, 2021, 47(12): 2611-2622. doi: 10.13700/j.bh.1001-5965.2020.0499
引用本文: 邓飙, 陈渐伟, 郭杨, 等 . 转盘轴承集聚效应分析及其对回转性能的影响[J]. 北京航空航天大学学报, 2021, 47(12): 2611-2622. doi: 10.13700/j.bh.1001-5965.2020.0499
DENG Biao, CHEN Jianwei, GUO Yang, et al. Analysis of accumulation effect of turntable bearing and its influence on rotary performance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2611-2622. doi: 10.13700/j.bh.1001-5965.2020.0499(in Chinese)
Citation: DENG Biao, CHEN Jianwei, GUO Yang, et al. Analysis of accumulation effect of turntable bearing and its influence on rotary performance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2611-2622. doi: 10.13700/j.bh.1001-5965.2020.0499(in Chinese)

转盘轴承集聚效应分析及其对回转性能的影响

doi: 10.13700/j.bh.1001-5965.2020.0499
基金项目: 

国家自然科学基金 61673386

中国博士后科学基金 2017M613201

中国博士后科学基金 2019T120944

详细信息
    通讯作者:

    邓飙, E-mail: djm202@163.com

  • 中图分类号: TH133

Analysis of accumulation effect of turntable bearing and its influence on rotary performance

Funds: 

National Natural Science Foundation of China 61673386

China Postdoctoral Science Foundation 2017M613201

China Postdoctoral Science Foundation 2019T120944

More Information
  • 摘要:

    针对航天发射台转盘轴承工作时出现滚动体集聚导致摩擦力矩增大的问题,研究转盘轴承中滚动体之间间隙变化对集聚效应的影响。通过对典型工位处进行有限元分析,对比不同接触类型转盘轴承的滚道变形和滚动体接触作用力的分布规律。在确定滚动体与隔离块的几何关系后,进一步分析了滚道变形和滚动体接触作用力的时变性对滚动体间隙变化的影响,并将间隙变化和集聚效应建立了联系。有限元计算得到的发射台框架变形与实验测量数据一致,验证了有限元计算的可靠性。仿真结果显示,由于下滚道发生轴向变形,滚动体在运动过程中不断交替进行“爬坡”和“下坡”;滚道径向变形导致滚动体之间增大了较多的间隙;各滚动体的驱动摩擦力不断变化,运动状态具有时变性,当转盘轴承中间隙增加时,运动状态不断变化的滚动体导致增加的间隙出现累积,引起滚动体集聚。为消除滚动体集聚效应,探索其对摩擦力矩的影响,进行了对比实验。结果表明:集聚效应导致发射台的摩擦力矩增加,且变化剧烈。

     

  • 图 1  转盘轴承回转实验平台

    Figure 1.  Turntable bearing rotary experimental platform

    图 2  发射平台和加载设备连接关系

    Figure 2.  Connection relationship between launching platform and loading device

    图 3  航天发射台有限元模型

    Figure 3.  Finite element model of space launch pad

    图 4  轴向连接器

    Figure 4.  Axial connector

    图 5  航天发射台下框架轴向位移云图

    Figure 5.  Axial displacement contour of lower frame of space launch pad

    图 6  下框架变形测量图

    Figure 6.  Deformation measurement of lower frame

    图 7  下框架轴向变形的验证

    Figure 7.  Verification of lower frame axial deformation

    图 8  滚动体相位角分布图

    Figure 8.  Phase angle distribution of rolling body

    图 9  单排2点接触式转盘轴承滚动体接触作用力

    Figure 9.  Contact force of rolling body of single-row two-point contact turntable bearing

    图 10  4点接触式转盘轴承连接单元定义

    Figure 10.  Definition of connection unit of four-point contact turntable bearing

    图 11  单排4点接触式转盘轴承滚动体接触作用力

    Figure 11.  Contact force of rolling body of single-row four-point contact turntable bearing

    图 12  连接单元各节点位移关系

    Figure 12.  Displacement relation of nodes of connection unit

    图 13  转盘轴承下滚道轴向位移变化

    Figure 13.  Changes of axial displacement of lower raceway of turntable bearing

    图 14  单排2点接触式转盘轴承径向位移变化

    Figure 14.  Changes of radial displacement of single-row two-point contact turntable bearing

    图 15  单排4点接触式转盘轴承径向位移变化

    Figure 15.  Changes of radial displacement of single-row four-point contact turntable bearing

    图 16  滚动体径向位移对比

    Figure 16.  Comparison of radial displacement of rolling body

    图 17  滚动体间隙简化计算

    Figure 17.  Simplified calculation of rolling body clearance

    图 18  转盘轴承间隙变化对比

    Figure 18.  Comparison of clearance changes of turntable bearing

    图 19  隔离块下滑距离

    Figure 19.  Sliding distance of isolation block

    图 20  滚动体与隔离块间距变化分析图

    Figure 20.  Analysis of variation of distance between rolling body and isolation block

    图 21  腹板式多孔结构分段保持架

    Figure 21.  Sectional retainer of web-type porous structure

    图 22  液压马达油压测试图

    Figure 22.  Hydraulic motor oil pressure test diagram

    图 23  液压马达压差变化曲线

    Figure 23.  Hydraulic motor differential pressure curve

    图 24  转盘轴承等效摩擦力矩变化

    Figure 24.  Variation of equivalent friction moment of turntable bearing

    图 25  等效摩擦力矩对比

    Figure 25.  Comparison of equivalent friction moments

    表  1  回转实验分组

    Table  1.   Rotary experimental group

    实验分组 被测转盘轴承
    I 单排4点接触转盘轴承+腹板式保持架
    II 单排2点接触转盘轴承+隔离块
    下载: 导出CSV
  • [1] 牛荣军, 徐金超, 邵秀华, 等. 双排非对称四点接触球转盘轴承力学性能分析[J]. 机械工程学报, 2018, 54(9): 177-186. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201809022.htm

    NIU R J, XU J C, SHAO X H, et al. Mechanical properties analysis of asymmetric double row four-point-contact slewing bearing[J]. Journal of Mechanical Engineering, 2018, 54(9): 177-186(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201809022.htm
    [2] 王思明, 许明恒. 风力发电机转盘轴承微动磨损的试验研究[J]. 中国机械工程, 2010, 21(20): 2430-2433. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201020008.htm

    WANG S M, XU M H. Research on fretting wear of wind turbine slewing bearings[J]. China Mechanical Engineering, 2010, 21(20): 2430-2433(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201020008.htm
    [3] JONES A B. A general theory for elastically constrained ball and radial roller bearings under arbitrary load and speed conditions[J]. Journal of Basic Engineering, 1960, 82(2): 309-320. doi: 10.1115/1.3662587
    [4] 李震, 关先磊, 钟锐, 等. 联合载荷下角接触球轴承的动态特性分析[J]. 机械工程学报, 2020, 56(17): 116-125. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202017012.htm

    LI Z, GUAN X L, ZHONG R, et al. Analysis of dynamic characteristics of angle contact bearings with combined loads[J]. Journal of Mechanical Engineering, 2020, 56(17): 116-125(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202017012.htm
    [5] 金海善, 朱爱斌, 陈渭. 利用改进牛顿-拉夫逊法的高速圆柱滚子轴承打滑分析[J]. 西安交通大学学报, 2015, 49(1): 133-138. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201501022.htm

    JIN H S, ZHU A B, CHEN W. Skidding analysis of high-speed cylindrical roller bearings using improved Newton-Raphson method[J]. Journal of Xi'an Jiaotong University, 2015, 49(1): 133-138(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201501022.htm
    [6] HARRIS T A. An analytical method to predict skidding in thrust-loaded, angular-contact ball bearings[J]. Journal of Lubrication Technology, 1971, 93(1): 17-23. doi: 10.1115/1.3451511
    [7] HARRIS T A, KOTZALAS M N. Advanced concepts of bearing technology: Rolling bearing analysis[M]. 5th ed. Boca Raton: CRC Press, 2006.
    [8] 马子魁. 基于拟静力学方法的球轴承动力学特性研究[D]. 杭州: 浙江大学, 2010: 66-68.

    MA Z K. Research on dynamic behaviors of ball bearings based on quasi-static method[D]. Hangzhou: Zhejiang University, 2010: 66-68(in Chinese).
    [9] 丁长安, 周福章, 朱均, 等. 滚道控制理论与滚动体姿态角的确定[J]. 机械工程学报, 2001, 37(2): 58-61. doi: 10.3321/j.issn:0577-6686.2001.02.013

    DING C A, ZHOU F Z, ZHU J, et al. Raceway control assumption and the determination of rolling element attitude angle[J]. Journal of Mechanical Engineering, 2001, 37(2): 58-61(in Chinese). doi: 10.3321/j.issn:0577-6686.2001.02.013
    [10] 张进华, 方斌, 朱永生, 等. 基于球-滚道非完全接触状态下的球轴承载荷分布计算及刚度特性研究[J]. 机械工程学报, 2020, 56(9): 73-83. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202009010.htm

    ZHANG J H, FANG B, ZHU Y S, et al. Investigation of the load distribution and stiffness characteristic of ball bearing under ball-raceway separation condition[J]. Journal of Mechanical Engineering, 2020, 56(9): 73-83(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202009010.htm
    [11] 邵毅敏, 涂文兵. 深沟球轴承三维非线性时变振动特性研究[J]. 振动工程学报, 2013, 26(6): 831-838. doi: 10.3969/j.issn.1004-4523.2013.06.004

    SHAO Y M, TU W B. 3D nonlinear time-varying vibration characteristics of deep-groove ball bearing[J]. Journal of Vibration Engineering, 2013, 26(6): 831-838(in Chinese). doi: 10.3969/j.issn.1004-4523.2013.06.004
    [12] 牛荣军, 胡余生, 汪永刚, 等. 局部受载滚轮滚针轴承承载性能仿真分析[J]. 航空动力学报, 2019, 34(10): 2227-2236. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201910016.htm

    NIU R J, HU Y S, WANG Y G, et al. Loading performances simulation analysis of roller needle bearing with partial loading[J]. Journal of Aerospace Power, 2019, 34(10): 2227-2236(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201910016.htm
    [13] 崔立. 航空发动机高速滚动轴承及转子系统的动态性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2008: 52-58.

    CUI L. Research on dynamic performances of high-speed rolling bearing and rotor system of aeroengine[D]. Harbin: Harbin Institute of Technology, 2008: 52-58(in Chinese).
    [14] 梁明轩, 袁惠群. 滚动轴承-柔性碰摩转子系统非线性动力学响应分析[J]. 动力学与控制学报, 2013, 11(2): 153-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXK201302013.htm

    LIANG M X, YUAN H Q. Nonlinear dynamic response on rotor system of ball bearing-flexible rub[J]. Journal of Dynamics and Control, 2013, 11(2): 153-158(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLXK201302013.htm
    [15] 刘光辉, 洪军, 孙岩辉, 等. 考虑滚子位置变化的圆柱滚子轴承非线性刚度特性分析[J]. 中国机械工程, 2020, 31(5): 505-512. doi: 10.3969/j.issn.1004-132X.2020.05.001

    LIU G H, HONG J, SUN Y H, et al. Nonlinear stiffness characteristic analysis of cylindrical roller bearings considering variation of roller positions[J]. China Mechanical Engineering, 2020, 31(5): 505-512(in Chinese). doi: 10.3969/j.issn.1004-132X.2020.05.001
    [16] 姚廷强, 迟毅林, 黄亚宇, 等. 滚动轴承刚柔多体接触动力学分析[J]. 中国机械工程, 2008, 19(16): 1924-1928. doi: 10.3321/j.issn:1004-132X.2008.16.009

    YAO T Q, CHI Y L, HUANG Y Y, et al. Rigid and flexible contact dynamics analysis on rolling bearing[J]. China Mechanical Engineering, 2008, 19(16): 1924-1928(in Chinese). doi: 10.3321/j.issn:1004-132X.2008.16.009
    [17] 运侠伦, 梅雪松, 姜歌东, 等. 高速主轴角接触球轴承动刚度分析及测试方法[J]. 振动、测试与诊断, 2019, 39(4): 892-897. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201904030.htm

    YUN X L, MEI X S, JIANG G D, et al. Dynamic stiffness analysis and test method of high speed spindle angular contact ball bearing[J]. Journal of Vibration, Measurement and Diagnosis, 2019, 39(4): 892-897(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201904030.htm
    [18] GHAISAS N, WASSGREN C R, SADEGHI F. Cage instabilities in cylindrical roller bearings[J]. Journal of Tribology, 2004, 126(4): 681-689. doi: 10.1115/1.1792674
    [19] 姚廷强, 王立华, 刘孝保, 等. 变工况下角接触球轴承保持架稳定性分析[J]. 振动与冲击, 2016, 35(18): 172-180. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201618028.htm

    YAO T Q, WANG L H, LIU X B, et al. Dynamic stability analysis on the cage of ball bearing under varying working environment[J]. Journal of Vibration and Shock, 2016, 35(18): 172-180(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201618028.htm
    [20] 孙雪, 邓四二, 陈国定, 等. 弹性支承下圆柱滚子轴承保持架稳定性分析[J]. 航空动力学报, 2018, 33(2): 487-496. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201802028.htm

    SUN X, DENG S E, CHEN G D, et al. Analysis of cage's stability in a cylindrical roller bearing with elastic support[J]. Journal of Aerospace Power, 2018, 33(2): 487-496(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201802028.htm
    [21] 雷亚国, 韩天宇, 王彪, 等. XJTU-SY滚动轴承加速寿命试验数据集解读[J]. 机械工程学报, 2019, 55(16): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201916001.htm

    LEI Y G, HAN T Y, WANG B, et al. XJTU-SY rolling element bearing accelerated life test datasets: A tutorial[J]. Journal of Mechanical Engineering, 2019, 55(16): 1-6(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201916001.htm
    [22] 周鹏举. YRT转台轴承摩擦力矩特性研究[D]. 洛阳: 河南科技大学, 2019: 32-40.

    ZHOU P J. Study on friction torque characteristics of rotary table bearing YRT[D]. Luoyang: Henan University of Science and Technology, 2019: 32-40(in Chinese).
    [23] 魏喜新. 液压技术手册[M]. 上海: 上海科学技术出版社, 2013: 122-126.

    WEI X X. Handbook of hydraulic technology[M]. Shanghai: Shanghai Scientific and Technical Press, 2013: 122-126(in Chinese).
  • 加载中
图(25) / 表(1)
计量
  • 文章访问数:  256
  • HTML全文浏览量:  65
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-07
  • 录用日期:  2020-10-16
  • 网络出版日期:  2021-12-20

目录

    /

    返回文章
    返回
    常见问答