留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂背景下机场道面细带状结构病害检测算法

李海丰 韩红阳

李海丰, 韩红阳. 复杂背景下机场道面细带状结构病害检测算法[J]. 北京航空航天大学学报, 2022, 48(1): 36-44. doi: 10.13700/j.bh.1001-5965.2020.0512
引用本文: 李海丰, 韩红阳. 复杂背景下机场道面细带状结构病害检测算法[J]. 北京航空航天大学学报, 2022, 48(1): 36-44. doi: 10.13700/j.bh.1001-5965.2020.0512
LI Haifeng, HAN Hongyang. Algorithm to detect thin strip-shaped structural diseases on airport pavement in complex background[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 36-44. doi: 10.13700/j.bh.1001-5965.2020.0512(in Chinese)
Citation: LI Haifeng, HAN Hongyang. Algorithm to detect thin strip-shaped structural diseases on airport pavement in complex background[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 36-44. doi: 10.13700/j.bh.1001-5965.2020.0512(in Chinese)

复杂背景下机场道面细带状结构病害检测算法

doi: 10.13700/j.bh.1001-5965.2020.0512
基金项目: 

国家重点研发计划 2019YFB1310601

详细信息
    通讯作者:

    李海丰, E-mail: lihf_cauc@126.com

  • 中图分类号: TP391

Algorithm to detect thin strip-shaped structural diseases on airport pavement in complex background

Funds: 

National Key R & D Program of China 2019YFB1310601

More Information
  • 摘要:

    机场道面裂缝、角隅断裂、接缝破碎、修补等病害宽度狭小、长短不一、图像中像素占比少,呈细带状结构,且与复杂背景对比度低,现有检测算法效果不佳。针对以上问题,提出了一种基于注意力机制与特征融合的深度神经网络模型DetMSPNet。首先,利用注意力机制模块CBAM,使得特征学习更加专注于细带状结构病害区域,抑制干扰信息;其次,构建残差空洞金字塔模块,提取不同尺度空间下的特征信息;然后,设计最大池化支路,便于之后浅、深层不同层次特征进行融合,加强模型对于病害的定位能力,并且将深层特征输入3种不同扩张率的扩张卷积和金字塔池化模块,使得病害特征包含更多全局上下文信息;最后,对所有层输出的病害特征信息进行融合,实现不同尺度、不同层次特征的信息互补。与目前3种经典的目标检测算法在机场道面病害图像数据集APD上做了对比实验,结果表明:所提算法的mAP达到78.51%,优于对比算法。所提DetMSPNet模型,提高了算法对机场道面细带状结构病害检测中宽度狭小、长短不一、图像中像素占比少、与复杂背景对比度低等情况的适应能力。

     

  • 图 1  DetMSPNet详细结构

    Figure 1.  Detailed structure of DetMSPNet

    图 2  嵌入CBAM的DetBlock

    Figure 2.  DetBlock embedded in CBAM

    图 3  三个不同扩张率的扩张卷积

    Figure 3.  Dilated convolutions with three dilated rates

    图 4  机场道面安全检测机器人

    Figure 4.  Airport pavement safety detection robot

    图 5  不同算法在APD数据集上的可视化结果展示

    Figure 5.  Visualization results of various algorithms on APD dataset

    表  1  APD数据集详情

    Table  1.   Details of APD dataset

    参数 训练 验证 测试
    图像大小/像素 900×600 900×600 900×600
    图像数量(扩充后)/张 7 213 1 803 547
    下载: 导出CSV

    表  2  机场道面APD数据集检测结果

    Table  2.   Detection results on airport pavement APD dataset

    算法 网络 平均速度/s AP/% mAP/%
    裂缝 接缝破碎 角隅断裂 修补
    STDN Densenet169 0.023/(GPU) 28.96 59.42 89.37 79.47 64.28
    Faster R-CNN ResNet-101 0.062(GPU) 40.86 68.53 90.47 74.34 68.55
    Cascade R-CNN DetNet 0.137(GPU) 47.96 87.11 90.91 82.95 77.23
    本文算法 DetMSPNet 0.167(GPU) 49.44 87.54 92.64 84.42 78.51
    下载: 导出CSV

    表  3  CBAM模块的有效性

    Table  3.   Effectiveness of CBAM module

    网络 AP/% mAP/%
    裂缝 接缝破碎 角隅断裂 修补
    DetMSPNet (无CBAM) 49.82 89.09 90.91 83.67 78.37
    DetMSPNet 49.44 87.54 92.64 84.42 78.51
    下载: 导出CSV

    表  4  DetASPP模块的有效性

    Table  4.   Effectiveness of DetASPP module

    网络 AP/% mAP/%
    裂缝 接缝破碎 角隅断裂 修补
    DetMSPNet (无DetASPP) 48.55 88.35 92.81 83.19 78.23
    DetMSPNet 49.44 87.54 92.64 84.42 78.51
    下载: 导出CSV

    表  5  最大池化支路的有效性

    Table  5.   Effectiveness of maximum pooling branch

    网络 AP/% mAP/%
    裂缝 接缝破碎 角隅断裂 修补
    DetMSPNet(无最大池化支路) 49.18 87.81 90.91 83.19 77.77
    DetMSPNet 49.44 87.54 92.64 84.42 78.51
    下载: 导出CSV

    表  6  三种不同扩张率的扩张卷积的有效性

    Table  6.   Effectiveness of dilated convolution with three dilated rates

    网络 AP/% mAP/%
    裂缝 接缝破碎 角隅断裂 修补
    DetMSPNet(无扩张卷积) 48.75 88.31 92.01 83.94 78.25
    DetMSPNet 49.44 87.54 92.64 84.42 78.51
    下载: 导出CSV

    表  7  金字塔池化模块的有效性

    Table  7.   Effectiveness of pyramid pooling module

    网络 AP/% mAP/%
    裂缝 接缝破碎 角隅断裂 修补
    DetMSPNet(无PPM) 48.06 88.69 90.91 83.32 77.75
    DetMSPNet 49.44 87.54 92.64 84.42 78.51
    下载: 导出CSV
  • [1] SORNCHAREAN S, PHIPHOBMONGKOL S. Crack detection on asphalt surface image using enhanced grid cell analysis[C]//4th IEEE International Symposium on Electronic Design, Test and Applications. Piscataway: IEEE Press, 2008: 49-54.
    [2] 李清泉, 邹勤, 毛庆洲. 基于最小代价路径搜索的路面裂缝检测[J]. 中国公路学报, 2010, 23(6): 28-33. doi: 10.3969/j.issn.1001-7372.2010.06.005

    LI Q Q, ZOU Q, MAO Q Z. Pavement crack detection based on minimum cost path searching[J]. China Journal of Highway and Transport, 2010, 23(6): 28-33(in Chinese). doi: 10.3969/j.issn.1001-7372.2010.06.005
    [3] GUAN H, LI J, YU Y, et al. Iterative tensor voting for pavement crack extraction using mobile laser scanning data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 53(3): 1527-1537.
    [4] PENG L, CHAO W, SHUANGMIAO L, et al. Research on crack detection method of airport runway based on twice-threshold segmentation[C]//2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC). Piscataway: IEEE Press, 2015: 1716-1720.
    [5] SIMONYAN K, ZISSERMAN A. Two-stream convolutional networks for action recognition in videos[C]//Advances in Neural Information Processing Systems, 2014: 568-576.
    [6] ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//European Conference on Computer Vision. Berlin: Springer, 2014: 818-833.
    [7] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 580-587.
    [8] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2015: 1440-1448.
    [9] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
    [10] ZHOU P, NI B, GENG C, et al. Scale-transferrable object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 528-537.
    [11] CAI Z, VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 6154-6162.
    [12] LI Z, PENG C, YU G, et al. DetNet: A backbone network for object detection[EB/OL]. (2018-04-17)[2020-09-01]. https://arxiv.org/abs/1804.06215v2.
    [13] 中国民用航空局. 民用机场道面评价管理技术规范: MH/T 5024—2009[S]. 北京: 人民交通出版社, 2009.

    Civil Aviation Administration of PRC. Technical specifications of aerodrome pavement evaluation and management: MH/T 5024—2009[S]. Beijing: China Communications Press, 2009(in Chinese).
    [14] 王森, 伍星, 张印辉, 等. 基于深度学习的全卷积网络图像裂纹检测[J]. 计算机辅助设计与图形学学报, 2018, 30(5): 859-867. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201805013.htm

    WANG S, WU X, ZHANG Y H, et al. Image crack detection with fully convolutional network based on deep learning[J]. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(5): 859-867(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201805013.htm
    [15] CHA Y J, CHOI W, BUYUKOZTURK O. Deep learning-based crack damage detection using convolutional neural networks[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(5): 361-378. doi: 10.1111/mice.12263
    [16] CHA Y J, CHOI W, SUH G, et al. Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(9): 731-747. doi: 10.1111/mice.12334
    [17] ZOU Q, ZHANG Z, LI Q, et al. DeepCrack: Learning hierarchical convolutional features for crack detection[J]. IEEE Transactions on Image Processing, 2018, 28(3): 1498-1512.
    [18] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]//European Conference on Computer Vision. Berlin: Springer, 2018: 3-19.
    [19] ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 2881-2890.
  • 加载中
图(5) / 表(7)
计量
  • 文章访问数:  223
  • HTML全文浏览量:  35
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-11
  • 录用日期:  2020-11-13
  • 网络出版日期:  2022-01-20

目录

    /

    返回文章
    返回
    常见问答