留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连接方式对电池模块一致性与产热影响

丁昌明 文华

丁昌明, 文华. 连接方式对电池模块一致性与产热影响[J]. 北京航空航天大学学报, 2022, 48(1): 174-181. doi: 10.13700/j.bh.1001-5965.2020.0513
引用本文: 丁昌明, 文华. 连接方式对电池模块一致性与产热影响[J]. 北京航空航天大学学报, 2022, 48(1): 174-181. doi: 10.13700/j.bh.1001-5965.2020.0513
DING Changming, WEN Hua. Influence of connection mode on consistency and heat production of battery modules[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 174-181. doi: 10.13700/j.bh.1001-5965.2020.0513(in Chinese)
Citation: DING Changming, WEN Hua. Influence of connection mode on consistency and heat production of battery modules[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 174-181. doi: 10.13700/j.bh.1001-5965.2020.0513(in Chinese)

连接方式对电池模块一致性与产热影响

doi: 10.13700/j.bh.1001-5965.2020.0513
基金项目: 

国家自然科学基金 51762034

详细信息
    通讯作者:

    文华, E-mail: wenhua25@ncu.edu.cn

  • 中图分类号: TM912

Influence of connection mode on consistency and heat production of battery modules

Funds: 

National Natural Science Foundation of China 51762034

More Information
  • 摘要:

    为了研究锂离子电池成组使用时遇到的不一致性和温度不均的问题,基于电化学-热耦合模型,以8块软包电池为例,通过多种串并联方式建立不同的电路模块,分析在1C和0.5C放电过程中电池的温度特征和不一致性。结果表明:电池模块的均温性和一致性与放电倍率有关。不管是先串后并还是先并后串,并联支路的增加或者是串联单元数量的减少都会使电池模块的平均温升和最大温差降低,还会影响温升速率和放电结束时的电压。并联支路数相同时,先串后并模块的一致性要比先并后串好。对于先并后串的模块,其并联支路中串联电池的数量越多,放电过程中电池之间的一致性越差。对于先串后并的模块,其并联的支路数越多,电池的一致性越差。

     

  • 图 1  电池模块结构简化示意图

    Figure 1.  Simplified schematic diagram of battery module structure

    图 2  电池模块拓扑

    Figure 2.  Battery module topology

    图 3  热电偶位置分布

    Figure 3.  Thermocouple position distribution

    图 4  仿真与实验温度数据

    Figure 4.  Simulation and experimental temperature data

    图 5  仿真与实验电压数据

    Figure 5.  Simulation and experimental voltage data

    图 6  电池模块平均温升

    Figure 6.  Average temperature rise of battery module

    图 7  电池模块最大温差

    Figure 7.  Maximum temperature difference of battery module

    图 8  不同电路放电结束时的电池电压对比

    Figure 8.  Comparison of battery voltage at the end of discharge in different circuits

    图 9  不同电路的不一致性系数

    Figure 9.  Inconsistency coefficient of different circuits

    表  1  电池的部分参数

    Table  1.   Partial battery parameters

    参数 正极 隔膜 负极 其余数据 描述
    L/μm 90a 20a 60a 厚度
    Rp/μm 3.5a 6a 活性颗粒粒子半径
    ε1 0.56b 0.44b 固相体积分数
    ε2 0.555 6b 0.4b 0.444 4b 液相体积分数
    c1, max/(mol·m-3) 19 102b 36 100b 最大可嵌锂浓度
    c2, 0/(mol·m-3) 1 200a 1 200a 1 200a 初始电解液锂浓度
    k0/(m·s-1) 4.38×10-11c 1.63×10-11c 反应速率常数
    H×W×Lb/mm 342×109.5×9.5a 电池长×宽×厚
    Cpa/(J·(kg·K)-1) 1 299.4a 电芯平均比热容
    Cpb/(J·(kg·K)-1) 900a 385a 极耳比热容
    λa/(W·(m·K)-1) 1.282 7b 电芯平均导热系数
    λb/(W·(m·K)-1) 238b 400b 极耳导热系数
    注:上标a为厂家提供数据;上标b为计算所得数据;上标c为根据参考文献和基于文献调整所得。
    下载: 导出CSV

    表  2  控制方程和边界条件

    Table  2.   Governing equations and boundary conditions

    控制方程 边界条件
    质量守恒
    电荷守恒
    电化学反应速率
    能量守恒
    下载: 导出CSV

    表  3  放电结束时的P0

    Table  3.   P0 at the end of discharge

    电路 P0值/10-5
    0.5C 1C
    电路a 7.488 9 22.843 3
    电路b 88.537 5 179.948 6
    电路c 54.487 5 89.021 1
    电路d 10.012 9 20.278 2
    电路e 88.706 9 180.002 8
    电路f 155.269 4 296.066 4
    下载: 导出CSV
  • [1] LI J, CHENG Y, AI L H, et al. 3D simulation on the internal distributed properties of lithiumion battery with planar tabbed configuration[J]. Journal of Power Sources, 2015, 293: 993-1005. doi: 10.1016/j.jpowsour.2015.06.034
    [2] DU S L, LAI Y Q, AI L, et al. An investigation of irreversible heat generation in lithium-ion batteries based on a thermo-electrochemical coupling method[J]. Applied Thermal Engineering, 2017, 121: 501-510. doi: 10.1016/j.applthermaleng.2017.04.077
    [3] APPIAH W A, PARK J, SONG S, et al. Design optimization of LiNiO6CoO2MnO2O2/graphite lithiumion cells based on simulation and experimental data[J]. Journal of Power Sources, 2016, 319: 147-158. doi: 10.1016/j.jpowsour.2016.04.052
    [4] FENG X N, SUN J, OUYANG M G, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium-ion battery module[J]. Journal of Power Sources, 2015, 275: 261-273. doi: 10.1016/j.jpowsour.2014.11.017
    [5] 李波, 张永生, 唐小晴. 电池组一致性影响因素分析[J]. 电池, 2019, 49(4): 312-315. https://www.cnki.com.cn/Article/CJFDTOTAL-DACI201904012.htm

    LI B, ZHANG Y S, TANG X Q. Analysis of factors affecting for battery pack consistency[J]. Battery Bimonthly, 2019, 49(4): 312-315(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DACI201904012.htm
    [6] 杨彦涛, 张研, 范光辉. 电池性能参数相关性及发热特性[J]. 电池, 2018, 48(3): 191-194. https://www.cnki.com.cn/Article/CJFDTOTAL-DACI201803021.htm

    YANG Y T, ZHANG Y, FAN G H. Correlation of battery performance parameters and thermal characteristics[J]. Battery Bimonthly, 2018, 48(3): 191-194(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DACI201803021.htm
    [7] LOVE C T, VIRJI M B V, ROCHELEAU R E, et al. State-of-health monitoring of 18650 4S packs with a single-point impedance diagnostic[J]. Journal of Power Sources, 2014, 266: 512-519. doi: 10.1016/j.jpowsour.2014.05.033
    [8] LAMB J, ORENDORFF C J, STEELE L A M, et al. Failure propagation in multi-cell lithium ion batteries[J]. Journal of Power Sources, 2015, 283: 517-523. doi: 10.1016/j.jpowsour.2014.10.081
    [9] 干年妃, 孙长乐, 刘东旭, 等. 变接触面液冷系统的电池模组温度一致性研究[J]. 湖南大学学报(自然科学版), 2020, 47(6): 34-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202006005.htm

    GAN N F, SUN C L, LIU D X, et al. Study on temperature consistency of battery module for liquid cooling system with variable contact surface[J]. Journal of Hunan University (Natural Sciences), 2020, 47(6): 34-42(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202006005.htm
    [10] WANG B, JI C W, WANG S F, et al. Study of non-uniform temperature and discharging distribution for lithium-ion battery modules in series and parallel connection[J]. Applied Thermal Engineering, 2020, 168: 114831. doi: 10.1016/j.applthermaleng.2019.114831
    [11] 王帅, 尹忠东, 郑重, 等. 电池单体参数不一致对电池模组性能影响研究[J]. 电测与仪表, 2020, 57(10): 76-82. https://www.cnki.com.cn/Article/CJFDTOTAL-DCYQ202010012.htm

    WANG S, YI Z D, ZHEN Z, et al. The influence of cell parameters inconsistency on the performance of different topological battery modules[J]. Electrical Measurement & Instrumentation. 2020, 57(10): 76-82(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DCYQ202010012.htm
    [12] 李腾, 林成涛, 陈全世. 磷酸铁锂电池组成组过程的不一致性分析[J]. 清华大学学报(自然科学版), 2012, 52(7): 1001-1006. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201207024.htm

    LI T, LIN C T, CHEN S Q. Inconsistency analysis of LiFePO4 battery packing[J]. Journal of Tsinghua University(Science and Technology), 2012, 52(7): 1001-1006(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201207024.htm
    [13] BANDHAUER T M, GARIMELLA S, FULLER T F. A critical review of thermal issues in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2011, 158(3): 1. doi: 10.1149/1.3515880
    [14] YANG N X, ZHANG X W, SHANG B B, et al. Unbalanced discharging and aging due to temperature differences among the cells in a lithium-ion battery pack with parallel combination[J]. Journal of Power Sources, 2016, 306: 733-741. doi: 10.1016/j.jpowsour.2015.12.079
    [15] 王震坡, 孙逢春, 林程. 不一致性对动力电池组使用寿命影响的分析[J]. 北京理工大学学报, 2006, 26(7): 577-580. doi: 10.3969/j.issn.1001-0645.2006.07.004

    WANG Z P, SUN F C, LIN C. An analysis on the influence of inconsistencies upon the service life of power battery packs[J]. Transactions of Beijing Institute of Technology, 2006, 26(7): 577-580(in Chinese). doi: 10.3969/j.issn.1001-0645.2006.07.004
    [16] DU S L, LAI Y Q, AI L, et al. An investigation of irreversible heat generation in lithium-ion batteries based on a thermo-electrochemical coupling method[J]. Applied Thermal Engineering, 2017, 121: 501-510. doi: 10.1016/j.applthermaleng.2017.04.077
    [17] 朱建功, 孙泽昌, 魏学哲, 等. 车用锂离子电池低温特性与加热方法研究进展[J]. 汽车工程, 2019, 41(5): 571-581. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201905015.htm

    ZHU J G, SUN Z C, WEI X Z, et al. Research progress on low-temperature characteristics and heating techniques of vehicle lithium-ion battery[J]. Automotive Engineering, 2019, 41(5): 571-581(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201905015.htm
    [18] 郭健忠, 张华伟, 张麒麟, 等. 车载动力电池成组热不一致性研究[J]. 机械设计与制造, 2020(9): 35-39. doi: 10.3969/j.issn.1001-3997.2020.09.010

    GUO J Z, ZHANG H W, ZHANG Q L, et al. Reasearch on thermal un-uniformity of vehicle traction battery pack[J]. Machinery Design & Manufacture, 2020(9): 35-39(in Chinese). doi: 10.3969/j.issn.1001-3997.2020.09.010
    [19] AN Z J, JIA L, WEI L T, et al. Investigation on lithium-ion battery electrochemical and thermal characteristic based on electrochemical-thermal coupled model[J]. Applied Thermal Engineering, 2018, 137: 792-807. doi: 10.1016/j.applthermaleng.2018.04.014
    [20] 许仕源. 基于模型的锂离子电池SOC估算[D]. 长沙: 湖南大学, 2019: 22-25.

    XU S Y. Model-based SOC estimation of lithium-ion battery[D]. Changsha: Hunan University, 2019: 22-25(in Chinese).
    [21] 王丽君. 磷酸铁锂电池SOC估算方法的研究[D]. 淮南: 安徽理工大学, 2019: 9-10.

    WANG L J. Study on SOC estimation method of lithium-ion phosphate batteries[D]. Huainan: Anhui University of Science & Technology, 2019: 9-10(in Chinese).
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  262
  • HTML全文浏览量:  103
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-11
  • 录用日期:  2020-11-06
  • 网络出版日期:  2022-01-20

目录

    /

    返回文章
    返回
    常见问答