留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于蛇形通道的电池组液冷方案设计与优化

王明悦 林家源 刘新华 张金刚 闫啸宇 杨世春

王明悦, 林家源, 刘新华, 等 . 基于蛇形通道的电池组液冷方案设计与优化[J]. 北京航空航天大学学报, 2022, 48(1): 166-173. doi: 10.13700/j.bh.1001-5965.2020.0514
引用本文: 王明悦, 林家源, 刘新华, 等 . 基于蛇形通道的电池组液冷方案设计与优化[J]. 北京航空航天大学学报, 2022, 48(1): 166-173. doi: 10.13700/j.bh.1001-5965.2020.0514
WANG Mingyue, LIN Jiayuan, LIU Xinhua, et al. Design and optimization of battery pack liquid cooling scheme based on serpentine channel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 166-173. doi: 10.13700/j.bh.1001-5965.2020.0514(in Chinese)
Citation: WANG Mingyue, LIN Jiayuan, LIU Xinhua, et al. Design and optimization of battery pack liquid cooling scheme based on serpentine channel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 166-173. doi: 10.13700/j.bh.1001-5965.2020.0514(in Chinese)

基于蛇形通道的电池组液冷方案设计与优化

doi: 10.13700/j.bh.1001-5965.2020.0514
基金项目: 

国家重点研发计划 2016YFB0100300

国家自然科学基金 U1864213

详细信息
    通讯作者:

    杨世春, E-mail: yangshichun@buaa.edu.cn

  • 中图分类号: U469.72

Design and optimization of battery pack liquid cooling scheme based on serpentine channel

Funds: 

National Key R & D Program of China 2016YFB0100300

National Natural Science Foundation of China U1864213

More Information
  • 摘要:

    相较于传统汽车,电动汽车在大力发展新能源的背景下具有良好的应用前景。电池作为电动汽车的动力源之一,其输出性能极易受到温度的影响,电池热管理系统对控制电池工作温度、延长电池组寿命、保障电动汽车安全稳定行驶等都具有重要意义。针对动力电池在工作过程中因自身温度过高而产生不利影响的现象,先分析了电池的生热特性。然后,提出了一套基于蛇形通道的液体冷却热管理方案并进行优化。最后,温度场仿真结果表明:优化后的液冷结构对电池组的工作环境有显著影响,高温工况下能够使电池工作在最佳温度范围20 35℃之内,同时满足电池组内温差小于10℃的要求。

     

  • 图 1  电池模组结构

    Figure 1.  Structure of battery module

    图 2  冷却液流动通道

    Figure 2.  Coolant flow channel

    图 3  电池组液冷结构网格模型

    Figure 3.  Grid model of battery pack liquid cooling structure

    图 4  无冷却结构电池组特征温度

    Figure 4.  Characteristic temperature of battery pack without cooling structure

    图 5  初始温度25℃、1 C放电工况

    Figure 5.  1 C discharge condition at initial temperature 25℃

    图 6  电池组最高温度和温差

    Figure 6.  Maximum temperature and temperature difference of battery pack

    图 7  高温工况液冷散热电池组温度云图

    Figure 7.  Temperature contour of liquid cooling battery pack under high temperature condition

    图 8  冷却液流道优化结构

    Figure 8.  Optimized structure of coolant flow channel

    图 9  不同结构、策略条件下电池组特征温度对比

    Figure 9.  Comparison of battery pack characteristic temperature under different structures and strategies

    图 10  优化方案高温工况电池组温度云图

    Figure 10.  Temperature contour of battery pack under high temperature condition in optimized scheme

    表  1  材料热物性参数

    Table  1.   Thermophysical parameters of material

    参数 单体电池 冷却液流道
    密度/(kg·m-3) 2 721 2 710
    比热容/(J·(kg·K)-1) 865 904
    导热系数/(W·(m·K)-1) kr=2.37kφ=kz=20.3 222
    下载: 导出CSV

    表  2  优化方案高温工况电池组特征温度

    Table  2.   Characteristic temperature of battery pack under high temperature condition in optimized scheme

    放电倍率/C 单支流道流量/(kg·s-1) 模组最高温度/℃ 模组平均温度/℃ 模组温差/℃ 冷却液出口平均温度/℃
    1 0.015 23.138 21.244 3.121 21.016
    1.5 0.015 25.221 22.069 5.194 21.681
    2 0.015 27.804 23.095 7.764 22.506
    2 0.06 25.904 21.853 5.904 20.351
    2.5 0.015 30.891 24.321 10.835 23.491
    2.5 0.06 27.905 22.973 7.769 21.839
    下载: 导出CSV
  • [1] 郭阳东, 李玉芳, 张文浩, 等. 典型工况下动力电池温度特性研究[J]. 电源技术, 2018, 42(8): 1143-1147. doi: 10.3969/j.issn.1002-087X.2018.08.016

    GUO Y D, LI Y F, ZHANG W H, et al. Research on temperature performance of power battery under typical condition[J]. Chinese Journal of Power Sources, 2018, 42(8): 1143-1147(in Chinese). doi: 10.3969/j.issn.1002-087X.2018.08.016
    [2] 于翔, 易勇, 赵文天, 等. 纯电动乘用车动力电池冷却策略优化研究[C]//2019中国汽车工程学会年会, 2019: 319-324.

    YU X, YI Y, ZHAO W T, et al. Research on optimization of power battery cooling strategy for pure electric passenger cars[C]//Proceedings of the Annual Meeting of China Society of Automotive Engineering, 2019: 319-324(in Chinese).
    [3] 葛瑞, 李云扬. 锂离子动力电池热管理系统的关键技术[J]. 电源世界, 2017(12): 41-47. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201411017.htm

    GE R, LI Y Y. Key technologies of thermal management system for lithium-ion power battery[J]. The World of Power Supply, 2017(12): 41-47(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201411017.htm
    [4] 王雅, 方林. 锂离子动力电池热管理方法研究进展[J]. 船电技术, 2019, 39(5): 14-18. doi: 10.3969/j.issn.1003-4862.2019.05.008

    WANG Y, FANG L. Research progress of battery thermal management on lithium-ion power batteries[J]. Marine Electric & Electronic Engineering, 2019, 39(5): 14-18(in Chinese). doi: 10.3969/j.issn.1003-4862.2019.05.008
    [5] LU Z, YU X L, WEI L C, et al. A comprehensive experimental study on temperature-dependent performance of lithium-ion battery[J]. Applied Thermal Engineering, 2019, 158: 113800. doi: 10.1016/j.applthermaleng.2019.113800
    [6] CHEN K, WU W X, YUAN F, et al. Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern[J]. Energy, 2019, 167: 781-790. doi: 10.1016/j.energy.2018.11.011
    [7] 陈凯, 汪双凤. 基于贪婪算法的风冷式动力电池热管理系统优化[J]. 工程热物理学报, 2018, 39(5): 1092-1096. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201805025.htm

    CHEN K, WANG S F. Optimization of air-cooled battery thermal management system based on greedy algorithm[J]. Journal of Engineering Thermophysics, 2018, 39(5): 1092-1096(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201805025.htm
    [8] 宋俊杰, 王义春, 王腾. 动力电池组分层风冷式热管理系统仿真[J]. 化工进展, 2017, 36(S1): 187-194. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ2017S1027.htm

    SONG J J, WANG Y C, WANG T. Simulation of layered air cooling thermal management system for lithium-ion battery pack[J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 187-194(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ2017S1027.htm
    [9] 黄堪丰, 陈才敏, 李锦和. 基于涡流管技术的动力电池热管理系统研究[J]. 机床与液压, 2019, 47(19): 96-99. doi: 10.3969/j.issn.1001-3881.2019.19.020

    HUANG K F, CHEN C M, LI J H. Research on power battery thermal management system based on vortex tube technology[J]. Machine Tool & Hydraulics, 2019, 47(19): 96-99(in Chinese). doi: 10.3969/j.issn.1001-3881.2019.19.020
    [10] MAHAMUD R, PARK C. Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity[J]. Journal of Power Sources, 2011, 196(13): 5685-5696. doi: 10.1016/j.jpowsour.2011.02.076
    [11] MILLS A, AL-HALLAJ S. Simulation of passive thermal management system for lithium-ion battery packs[J]. Journal of Power Sources, 2005, 141(2): 307-315. doi: 10.1016/j.jpowsour.2004.09.025
    [12] 王亮, 王荻楠, 王秀春. 冷却和蓄热结合的动力电池组热管理系统模型[J]. 电源技术, 2019, 43(4): 662-665. doi: 10.3969/j.issn.1002-087X.2019.04.035

    WANG L, WANG D N, WANG X C. Thermal management system model combining of cooling and heat preservation for power batteries[J]. Chinese Journal of Power Sources, 2019, 43(4): 662-665(in Chinese). doi: 10.3969/j.issn.1002-087X.2019.04.035
    [13] ZHENG Y R, SHI Y, HUANG Y H. Optimisation with adiabatic interlayers for liquid-dominated cooling system on fast charging battery packs[J]. Applied Thermal Engineering, 2019, 147: 636-646. doi: 10.1016/j.applthermaleng.2018.10.090
    [14] WU W X, YANG X Q, ZHANG G Q, et al. Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system[J]. Energy Conversion and Management, 2017, 138: 486-492. doi: 10.1016/j.enconman.2017.02.022
    [15] RAO Z H, WANG S F, WU M C, et al. Experimental investigation on thermal management of electric vehicle battery with heat pipe[J]. Energy Conversion and Management, 2013, 65: 92-97. doi: 10.1016/j.enconman.2012.08.014
    [16] 周海阔, 杨涛, 李平, 等. 基于热管技术的锂电池箱热管理系统设计与实验验证[J]. 可再生能源, 2017, 35(9): 1395-1403. https://www.cnki.com.cn/Article/CJFDTOTAL-NCNY201709021.htm

    ZHOU H K, YANG T, LI P, et al. Design and experimental verification of thermal management systems for power battery based on heat pipe technology[J]. Renewable Energy Resources, 2017, 35(9): 1395-1403(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NCNY201709021.htm
    [17] PENDERGAST D R, DEMAURO E P, FLETCHER M, et al. A rechargeable lithium-ion battery module for underwater use[J]. Journal of Power Sources, 2011, 196(2): 793-800. doi: 10.1016/j.jpowsour.2010.06.071
    [18] HUO Y T, RAO Z H, LIU X J, et al. Investigation of power battery thermal management by using mini-channel cold plate[J]. Energy Conversion and Management, 2015, 89: 387-395. doi: 10.1016/j.enconman.2014.10.015
    [19] ZHAO C R, SOUSA A C M, JIANG F M. Minimization of thermal non-uniformity in lithium-ion battery pack cooled by channeled liquid flow[J]. International Journal of Heat and Mass Transfer, 2019, 129: 660-670. doi: 10.1016/j.ijheatmasstransfer.2018.10.017
    [20] BASU S M, HARIHARAN K S, KOLAKE S M, et al. Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system[J]. Applied Energy, 2016, 181: 1-13. doi: 10.1016/j.apenergy.2016.08.049
    [21] WU F C, RAO Z H. The lattice Boltzmann investigation of natural convection for nanofluid based battery thermal management[J]. Applied Thermal Engineering, 2017, 115: 659-669. doi: 10.1016/j.applthermaleng.2016.12.139
    [22] 安周建, 贾力, 杨成亮, 等. 锂离子动力电池液体冷却实验研究[J]. 中国科学院大学学报, 2018, 35(2): 254-260. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKYB201802015.htm

    AN Z J, JIA L, YANG C L, et al. Experimental investigation of lithium-ion power battery liquid cooling[J]. Journal of University of Chinese Academy of Sciences, 2018, 35(2): 254-260(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZKYB201802015.htm
    [23] YANG X H, TAN S C, LIU J. Thermal management of Li-ion battery with liquid metal[J]. Energy Conversion and Management, 2016, 117: 577-585. doi: 10.1016/j.enconman.2016.03.054
    [24] 陈通, 孙国华, 王明强, 等. 基于液体的动力电池热管理系统性能研究[J]. 电源技术, 2019, 43(4): 658-661. doi: 10.3969/j.issn.1002-087X.2019.04.034

    CHEN T, SUN G H, WANG M Q, et al. Research on thermal management performance of electric vehicle power battery based on liquid[J]. Chinese Journal of Power Sources, 2019, 43(4): 658-661(in Chinese). doi: 10.3969/j.issn.1002-087X.2019.04.034
    [25] 李斌, 常国峰, 林春景, 等. 车用动力锂电池产热机理研究现状[J]. 电源技术, 2014, 38(2): 378-381. doi: 10.3969/j.issn.1002-087X.2014.02.057

    LI B, CHANG G F, LIN C J, et al. Research on heat generate mechanism of Li-ion batteries for electric vehicles[J]. Chinese Journal of Power Sources, 2014, 38(2): 378-381(in Chinese). doi: 10.3969/j.issn.1002-087X.2014.02.057
    [26] BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12. doi: 10.1149/1.2113792
    [27] 闵小滕. 圆柱形锂离子动力电池模组液冷结构优化设计[D]. 合肥: 合肥工业大学, 2019: 35-39.

    MIN X T. Optimum design of liquid cooling structure for cylindrical lithium-ion power battery module[D]. Hefei: Hefei University of Technology, 2019: 35-39(in Chinese).
    [28] SAW L H, POON H M, THIAM H S, et al. Novel thermal management system using mist cooling for lithium-ion battery packs[J]. Applied Energy, 2018, 223: 146-158. doi: 10.1016/j.apenergy.2018.04.042
    [29] SMITH J, HINTERBERGER M, HABLE P, et al. Simulative method for determining the optimal operating conditions for a cooling plate for lithium-ion battery cell modules[J]. Journal of Power Sources, 2014, 267: 784-792. doi: 10.1016/j.jpowsour.2014.06.001
    [30] 邱焕尧. 基于锂离子动力电池液冷散热结构设计及仿真分析[D]. 西安: 长安大学, 2019: 28-31.

    QIU H Y. Design and simulation analysis of liquid cooling structure based on lithium-ion power battery[D]. Xi'an: Chang'an University, 2019: 28-31(in Chinese).
    [31] 毛纪昕, 胡建强, 郭力, 等. 冷却液发展及应用综述[J]. 山东化工, 2019, 48(18): 55-56. doi: 10.3969/j.issn.1008-021X.2019.18.024

    MAO J X, HU J Q, GUO L, et al. Summary of development and application of coolant[J]. Shandong Chemical Industry, 2019, 48(18): 55-56(in Chinese). doi: 10.3969/j.issn.1008-021X.2019.18.024
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  534
  • HTML全文浏览量:  164
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-11
  • 录用日期:  2020-10-23
  • 网络出版日期:  2022-01-20

目录

    /

    返回文章
    返回
    常见问答