留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑倍率的平流层飞艇储能电池建模与分析

刘松松 孙康文

刘松松, 孙康文. 考虑倍率的平流层飞艇储能电池建模与分析[J]. 北京航空航天大学学报, 2022, 48(1): 182-192. doi: 10.13700/j.bh.1001-5965.2020.0519
引用本文: 刘松松, 孙康文. 考虑倍率的平流层飞艇储能电池建模与分析[J]. 北京航空航天大学学报, 2022, 48(1): 182-192. doi: 10.13700/j.bh.1001-5965.2020.0519
LIU Songsong, SUN Kangwen. Modeling and analysis of stratospheric airship's energy storage battery considering rate[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 182-192. doi: 10.13700/j.bh.1001-5965.2020.0519(in Chinese)
Citation: LIU Songsong, SUN Kangwen. Modeling and analysis of stratospheric airship's energy storage battery considering rate[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 182-192. doi: 10.13700/j.bh.1001-5965.2020.0519(in Chinese)

考虑倍率的平流层飞艇储能电池建模与分析

doi: 10.13700/j.bh.1001-5965.2020.0519
基金项目: 

国家自然科学基金 51775021

中央高校基本科研业务费专项资金 YWF-18-BH-Y-165

详细信息
    通讯作者:

    孙康文, E-mail: sunkw100@buaa.edu.cn

  • 中图分类号: V274

Modeling and analysis of stratospheric airship's energy storage battery considering rate

Funds: 

National Natural Science Foundation of China 51775021

the Fundamental Research Funds for the Central Universities YWF-18-BH-Y-165

More Information
  • 摘要:

    准确掌握储能电池的实际电量是确保平流层飞艇实现长航时飞行的关键因素之一。首先,建立了平流层飞艇能源系统仿真模型,对能量输入和消耗进行动态分析。随后,对储能电池进行不同电流倍率的充放电测试,采用多项式拟合的方法,根据测试数据建立了储能电池充放电过程中荷电状态(SOC)、剩余放电时间(RDT)、剩余充电时间(RCT)的分析模型。最后,结合能源系统能量输入、消耗模型和储能电池模型进行飞行模拟仿真,获取各部分变化数据,与已有试验数据进行量化对比分析。结果表明:所构建储能电池模型在SOC、RDT、RCT的计算误差分别小于3%、1.5%、1.5%,能够准确反映电池工作过程中SOC、RDT、RCT的变化,可为平流层飞艇平台制定优化的飞行策略提供量化支撑。

     

  • 图 1  平流层飞艇能量传递示意图

    Figure 1.  Schematic diagram of energy transfer in a stratospheric airship

    图 2  充放电测试示意图

    Figure 2.  Schematic diagram of charging and discharging test

    图 3  不同电流倍率放电时端电压与SOC的关系

    Figure 3.  Relationship between terminal voltage and SOC at different discharging rates

    图 4  SOC与端电压的8次多项式拟合

    Figure 4.  Fitting of eighth-degree polynomial between SOC and terminal voltage

    图 5  放电容量与电流倍率线性拟合

    Figure 5.  Linear fitting between discharging capacity and discharging rate

    图 6  不同电流倍率端电压与放电时间的关系

    Figure 6.  Relationship between terminal voltage and discharging time at different discharging rates

    图 7  放电时间与电流倍率拟合

    Figure 7.  Fitting between discharging time and discharging rate

    图 8  不同电流倍率充电时端电压与SOC的关系

    Figure 8.  Relationship between terminal voltage and SOC at different charging rates

    图 9  缓慢升压段SOC与端电压的拟合

    Figure 9.  Fitting between SOC and terminal voltage at the stage of voltage rising slowly

    图 10  缓慢升压段RCT与端电压的拟合

    Figure 10.  Fitting between RCT and terminal voltage at the stage of voltage rising slowly

    图 11  恒压段SOC与电流倍率的关系

    Figure 11.  Relationship between SOC and charging rates at constant voltage stage

    图 12  恒压段RCT与电流倍率的关系

    Figure 12.  Relationship between RCT and charging rates at constant voltage stage

    图 13  飞艇各部分能量情况(方案A)

    Figure 13.  Energy conditions of each part of airship (Plan A)

    图 14  充放电功率和电流(方案A)

    Figure 14.  Charging and discharging power and current (Plan A)

    图 15  模拟飞行试验结果(方案A)

    Figure 15.  Simulated flight test results (Plan A)

    图 16  模拟飞行试验结果(方案B)

    Figure 16.  Simulated flight test results (Plan B)

    表  1  测试电池的基本参数

    Table  1.   Basic parameters of test batteries

    参数 参数值
    标称容量/mAh 3 400
    电压范围/V 2.75~4.25
    放电温度范围/℃ -20~50
    充电温度范围/℃ -20~50
    下载: 导出CSV

    表  2  线性拟合8次多项式系数与电流倍率的结果

    Table  2.   Results of linear fitting of eighth-degree polynomial coefficients and discharging rate

    系数 Bj1 Bj0
    A8i 5.245×102 -1.888×103
    A7i -1.456×104 5.150×104
    A6i 1.762×105 -6.122×105
    A5i -1.215×106 4.143×106
    A4i 5.213×106 -1.746×107
    A3i -1.427×107 4.690×107
    A2i 2.432×107 -7.846×107
    A1i -2.360×107 7.474×107
    A0i 9.984×106 -3.103×107
    下载: 导出CSV

    表  3  不同电流倍率恒流放电的总放电时间

    Table  3.   Total duration of constant-current discharging at different discharging rates

    电流倍率/C T0i/min
    0.05 1 343
    0.1 675
    0.15 448
    0.2 334
    0.25 266
    0.3 220
    0.35 187
    0.4 162
    0.5 129
    下载: 导出CSV

    表  4  快速升压段充电时间与充电容量所占百分比

    Table  4.   Percentage of charging time and charging capacity at the stage of voltage rising rapidly

    电流倍率/C 时间占比/% 电量占比/%
    0.05 0.98 0.99
    0.1 1.36 1.39
    0.15 1.87 1.97
    0.2 2.29 2.49
    0.25 2.19 2.49
    0.3 1.96 2.32
    下载: 导出CSV

    表  5  缓慢升压段多项式系数与电流倍率拟合的结果

    Table  5.   Fitting results of polynomial coefficients and charging rates at the stage of voltage rising slowly

    系数 Ej2 Ej1 Ej0
    D2i -0.471 4 -0.300 9 -0.283 9
    D1i 3.367 3 2.576 2 3.287 1
    D0i -5.678 4 -5.859 7 -7.797 9
    下载: 导出CSV

    表  6  缓慢升压段系数pjI与电流倍率拟合结果

    Table  6.   Fitting results of coefficient pjI and charging rates at the stage of voltage rising slowly

    系数 aji bji cji
    G2i 1 309 -0.932 9 1 327
    G1i -14 407 -0.955 6 -10 967
    G0i 36 678 -0.973 6 28 329
    下载: 导出CSV

    表  7  飞艇参数

    Table  7.   Airship parameters

    几何参数 数值 能源相关参数 数值
    长度/m 220 储能电池容量/(kW·h) 700
    直径/m 54 电池能量密度/(Wh·kg-1) 330
    浸润面积/m2 33 000 电机效率 0.93
    体积/m2 380 000 螺旋桨效率 0.77
    飞行高度/m 20 000 太阳能电池效率(273 K) 0.2
    PV阵列面积/m2 2 200 PV阵列圆心角/(°) 90
    下载: 导出CSV

    表  8  两个飞行方案的参数设置

    Table  8.   Parameter setting for two flight schemes

    参数 方案A 方案B
    风速/(m·s-1) 15 20
    白天空速/(m·s-1) 27 25
    夜晚空速/(m·s-1) 15 15.5
    纬度/(°N) 109.50 109.50
    经度/(°E) 18.25 18.25
    下载: 导出CSV

    表  9  储能电池工作阶段划分(方案A)

    Table  9.   Work stage division of energy storage battery (Plan A)

    阶段 时刻 电流倍率/C
    1 18:00~18:40 0~ -0.066
    2 18:40~06:40 -0.066
    3 06:40~07:20 -0.066~0
    4 07:20~08:40 0
    5 08:40~11:32 0~0.268
    6 12:32~13:24 0.268~0
    7 13:24~18:00 0
    下载: 导出CSV

    表  10  储能电池工作阶段划分(方案B)

    Table  10.   Work stage division of energy storage battery(Plan B)

    阶段 时刻 电流倍率/C
    1 18:00~18:40 0~-0.072
    2 18:40~06:40 -0.072
    3 06:40~07:20 -0.072~0
    4 07:20~08:10 0
    5 08:10~11:52 0~0.339
    6 11:52~12:55 0.339~0
    7 12:55~18:00 0
    下载: 导出CSV
  • [1] 张泰华, 姜鲁华, 周江华. 放飞过程中平流层飞艇运动与受力分析[J]. 北京航空航天大学学报, 2018, 44(4): 691-699. doi: 10.13700/j.bh.1001-5965.2017.0227

    ZHANG T H, JIANG L H, ZHOU J H. Kinematic and mechanical analysis on launch process of stratospheric airship[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 691-699(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0227
    [2] ABBE G, SMITH H. Technological development trends in solar-powered aircraft systems[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 770-783. doi: 10.1016/j.rser.2016.01.053
    [3] OETTERSHAGEN P, MELZER A, MANTEL T, et al. Design of small hand-launched solar-powered UAVs: From concept study to a multi-day world endurance record flight[J]. Journal of Field Robotics, 2017, 34(7): 1352-1377. doi: 10.1002/rob.21717
    [4] 张健, 张德虎. 高空长航时太阳能无人机总体设计要点分析[J]. 航空学报, 2016, 37(S1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB2016S1001.htm

    ZHANG J, ZHANG D H. Essentials of configuration design of HALE solar-powered UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1): 1-7(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB2016S1001.htm
    [5] 梁高铭. 平流层飞艇能源管理系统建模与验证[D]. 北京: 北京航空航天大学, 2012: 67-80.

    LIANG G M. Modeling and verification of the energy management system for stratospheric airship[D]. Beijing: Beihang University, 2012: 67-80(in Chinese).
    [6] SHAN C, LV M, SUN K W, et al. Analysis of energy system configuration and energy balance for stratospheric airship based on position energy storage strategy[J]. Aerospace Science and Technology, 2020, 101: 105844. doi: 10.1016/j.ast.2020.105844
    [7] ZHANG L C, LI J, WU Y F, et al. Analysis of attitude planning and energy balance of stratospheric airship[J]. Energy, 2019, 183: 1089-1103. doi: 10.1016/j.energy.2019.07.002
    [8] DAI H F, WEI X Z, SUN Z C, et al. Online cell SOC estimation of Li-ion battery packs using a dual time-scale Kalman filtering for EV applications[J]. Applied Energy, 2012, 95: 227-237. doi: 10.1016/j.apenergy.2012.02.044
    [9] OUYANG M G, LIU G M, LU L G, et al. Enhancing the estimation accuracy in low state-of-charge area: A novel onboard battery model through surface state of charge determination[J]. Journal of Power Sources, 2014, 270: 221-237. doi: 10.1016/j.jpowsour.2014.07.090
    [10] ZHANG Y, SHANG Y L, CUI N X, et al. Parameters identification and sensitive characteristics analysis for lithium-ion batteries of electric vehicles[J]. Energies, 2017, 11(1): 19. doi: 10.3390/en11010019
    [11] YU J S, YANG J, TANG D Y, et al. Early prediction of remaining discharge time for lithium-ion batteries considering parameter correlation between discharge stages[J]. Eksploatacja i Niezawodnosc-Maintenance and Reliability, 2018, 21(1): 81-89. doi: 10.17531/ein.2019.1.10
    [12] YU J S, LIANG S, TANG D Y, et al. Remaining discharge time prognostics of lithium-ion batteries using dirichlet process mixture model and particle filtering method[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(9): 2317-2328. doi: 10.1109/TIM.2017.2708204
    [13] DONG G Z, WEI J W, CHEN Z H, et al. Remaining dischargeable time prediction for lithium-ion batteries using unscented Kalman filter[J]. Journal of Power Sources, 2017, 364: 316-327. doi: 10.1016/j.jpowsour.2017.08.040
    [14] 程树英, 林鹏程, 林培杰. 一种新型锂电池充电剩余时间预测方法[J]. 电源技术, 2019, 43(1): 99-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DYJS201901031.htm

    CHENG S Y, LIN P C, LIN P J. New method of predict remaining charging time for lithium-ion batteries[J]. Chinese Journal of Power Sources, 2019, 43(1): 99-102(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DYJS201901031.htm
    [15] MUELLER J, ZHAO Y Y, GARRARD W. Sensitivity and solar power analysis of optimal trajectories for autonomous airships[C]//AIAA Guidance, Navigation and Control Conference. Reston: AIAA, 2009.
    [16] FARLEY R. BalloonAscent: 3-D simulation tool for the ascent and float of high-altitude balloons[C]//AIAA 5th ATIO and 16th Lighter-than-Air Sys Tech and Balloon Systems Conferences. Reston: AIAA, 2005.
    [17] WU J F, WANG H L, HUANG Y, et al. Solar-powered aircraft endurance map[J]. Journal of Guidance, Control and Dynamics, 2019, 42(3): 687-694. doi: 10.2514/1.G003704
    [18] 徐颖, 沈英. 基于改进卡尔曼滤波的电池SOC估算[J]. 北京航空航天大学学报, 2014, 40(6): 855-860. doi: 10.13700/j.bh.1001-5965.2013.0414

    XU Y, SHEN Y. Improved battery state-of-charge estimation based on Kalman filter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(6): 855-860(in Chinese). doi: 10.13700/j.bh.1001-5965.2013.0414
    [19] LV M, LI J, DU H F, et al. Solar array layout optimization for stratospheric airships using numerical method[J]. Energy Conversion and Management, 2017, 135: 160-169. doi: 10.1016/j.enconman.2016.12.080
  • 加载中
图(16) / 表(10)
计量
  • 文章访问数:  254
  • HTML全文浏览量:  30
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-14
  • 录用日期:  2020-12-06
  • 网络出版日期:  2022-01-20

目录

    /

    返回文章
    返回
    常见问答